

Diffusion and Bacteria: A Study in Biophysics Walter Brose

Diffusion

Statistical probability of particles moving lacksquarefrom high concentration to low concentration

Fick's Law

Relationship between Flux (*j*) and Slope of lacksquareConcentration Gradient (dc/dx)

$$j = -D \, \frac{dc}{dx}$$

Diffusion Coefficients

- Physical property of a binary system
- Rate of area per time (dimensionally)
- Similar to Friction Coefficients
- Ranges for different binary systems
 - Gas Gas = 10^{-5} m²/s
 - Gas Liquid = 10^{-9} m²/s
 - Gas Solid = 10^{-13} m²/s
- Dimensionally

• D = Lv

- functions
 - This places an upper limit on the size bacteria can be
 - Too big = Diffusion too slow to keep alive

Maximum Size of Bacteria

$$I = Flux (j($$

(r) × Surface Area of Sphere $(4\pi r^2)$ $M = Experimental Consumption Rate(\alpha) \times Volume of Sphere(\frac{4}{3}\pi r^3)$

- Solve for Radius
- \bullet

Bacteria

Utilize *Passive Transport* (Diffusion) to satisfy life

Equate Intake Rate (I) to Metabolic Rate (M) • I – the rate at which O₂ can be taken into the bacterium through outer shell M – the rate at which the bacterium can metabolize the O₂ through whole volume

$$R = \sqrt{\frac{C_0(3)D}{\alpha}}$$

Here there is only have dependence on constants or experimentally determined values

Plugging in values I get

$$\left/ \frac{(.706\frac{mol}{m^3}) 3 \left(2.5 \times 10^{-9} \frac{m^2}{s}\right)}{1.1\frac{mol}{m^{3s}}} = 69.3 \mu m \right.$$

Thiomargarita Namibiensis

- that follows a statistical probability

Works Cited

Levin, P. A., & Angert, E. R. (2015). Small but mighty: Cell size and bacteria. Cold Spring Harbor Perspectives in Biology, 7(7), a019216. doi:10.1101/cshperspect.a019216 Marshall, W. F., Young, K. D., Swaffer, M., Wood, E., Nurse, P., Kimura, A., . . . Roeder, A. H. K. (2012). What determines cell size? BMC Biology, 10(1), 101. doi:10.1186/1741-7007-10-101 Maximum dissolved oxygen concentration saturation table. Retrieved from https://dnr.mo.gov/env/esp/wqm/DOSaturationTable.htm Nelson, P. (2014). Biological physics (5. print. ed.). New York, NY: Freeman. Nuclear Waste.20.3: Applications of diffusion Philip Nelson. (2003). *Biological physics: Energy, information, life* (5th ed.)

Russel, W. B. (1981). Brownian motion of small particles suspended in liquids. Annual Review of Fluid Mechanics, 13(1), 425-455. doi:10.1146/annurev.fl.13.010181.002233

Largest bacteria ever found Radius range: 50-150µm My calculation fits into this range Experimental values not "idealized" so my number on smaller end

Conclusion

Diffusion is random molecular motion Fick's Law, using concentrations and diffusion coefficients, in combination with known consumption rates, allows us to calculate upper size limit of bacteria

• This requires no biochemistry, only the physics of diffusion!