Neutron Stars in Open Clusters: (Why) Are they There?

Neutron Stars

At the end of its lifetime, a star with 10-29 times the mass of the sun will eventually undergo an explosion called a supernova. The iron core of the dying star collapses into an extremely dense stellar remnant called a neutron star.

Supernova Asymmetry

When a supernova occurs, matter is not ejected symmetrically. This imparts a kick velocity on the neutron star in the center.

If the initial mass (red and orange) is 10 neutron star masses and the solar (orange) is 2 solar masses. The left half goes 5000 km/s and the right goes 4995 km/s we can find the kick velocity:

Conservation of momentum: $p_i = p_f$

$$0 = p_{l\frac{1}{2}} + p_{r\frac{1}{2}} + p_{ns}$$

 $0 = -4M_{\odot}(5000km/s) + 4M_{\odot}(4995km/s) + 2M_{\odot}(v_{ns})$

We find a kick velocity of:

$$v_{ns} = 40 km/s$$

Rory Lowe

X-ray Binaries

When a compact remnant such as a neutron star is in a binary system where the other member of the system is a normal star, the system shines brightly in the X-rays.

The strong gravitational force of the neutron star (left) pulls material off of the normal star (right) into a disk (left) which heats up to millions of degrees kelvin and releases X-ray radiation.

Open Clusters

An open cluster is a group of stars that formed hundreds of millions of years ago and have stayed in the same area. They contain up to a few thousand stars.

The Open Cluster NGC 6819

Escape From Open Cluster

The escape velocity from a gravitational well such as a planet, a star, or a star cluster is the velocity at which:

$$KE + PE = 0$$

For the open cluster NGC 6819, based on a simple model, the escape velocity is:

$$v_{esc} = 1.516 km/s$$

Research And Questions

Dr. Natalie Gosnell and others discovered an unexpected number of X-ray sources in the open cluster pictured below, NGC 6819 (Gosnell et al. 2011). One of these X-ray sources had the signature of an X-ray binary system containing a neutron star. Based on the calculations here, detecting a neutron star in NGC 6819 would bring about a big change in the current understanding of open cluster dynamics and neutron star formation. How would a neutron star with a kick velocity of many km/s stay in a cluster with an escape velocity of just a few km/s? neutron stars form without a Can supernova? There is more work to be done to answer these questions.

References

Gosnell et al. 2012, ApJ, 745, 57

Acknowledgments

Thanks to Dr. Natalie Gosnell and Dr. Stephanie DiCenzo