Finding the Best Injury Risk Assessment for the Lower Extremities

By Antonio Calderon

Dr. Raoul Reiser-Colorado State University
Dr. Emilie Gray-Colorado College
Sports Injuries: An Epidemic

- Huge cost and burden
- $1.8 billion/year in school-age children
- Single Big 10 Institution: 1317 injuries across 4 years
Limb Asymmetries

- Measurable difference in performance/function between L/R limbs
 - Hamstring strains
 - Lower back pain
 - ACL tears
Functional Movement Assessments

• Simple, repeatable movements that may reveal risky biomechanics
 • Kinetic Chain Theory, Force Platforms

3 categories of FMAs:

1. Drop Jump (DJ)
Drop Jump (DJ)
Functional Movement Assessments cont.

2. Countermovement Jump w/ Rebound (CMJR)
Countermovement Jump with Rebound Jump (CMJR)
3. Single-leg Countermovement Jump (SL CMJ)
Braking vs. Propulsive Movements

• **Braking**: muscle lengthening under load ("resisting")

• **Propulsive**: muscle shortening under load ("contracting")

• Measuring asymmetry in both phases of movements → more info about injury risk
Muscle Activation Patterns

- Past research in muscle activation/neurological control
- Each phase/movement type should be categorized!
 - Braking Phase vs. Propulsive Phase
 - Unilateral vs. Bilateral

Electrode placement during muscle activation analysis

(Sismek, 2017)
Research Questions

1. Are 4 functional movement assessments interchangeable? (DJ, CMJ (countermovement jump), RBJ (rebound jump), SL CMJ)

2. Do we get any additional information by dividing these movements into braking and propulsive phases?

DJ

CMJR (x2)

RBJ

SL CMJ

Etc.
Hypotheses

• 3 **Bilateral** Movements will correlate strongly

• **Unilateral** Movements (SL CMJ) will correlate weakly with **Bilateral** movements (DJ, CMJ, RBJ)

• **Braking** Force will correlate weakly with **Propulsive Force**
Methods

• N=104, 3 jump types (DJ, CMJR, SL CMJ), 3 trials each
• 4 movements analyzed: DJ, CMJ, RJ, SL CMJ
• Pearson’s Correlations
 • R>0.5 = Strong
 • 0.3<R<0.5 = Moderate
 • R<0.3 = Weak
Results: Bilateral vs. Bilateral Propulsive

\[R = 0.679 \]

- \(R = 0.660 \) (CMJ – DJ)
- \(R = 0.708 \) (CMJ – RBJ)

ALL STRONG CORRELATIONS
Results: Bilateral vs. Bilateral Braking

Drop Jump Braking

Rebound Jump Braking

- **R = .573** *(RBJ – DJ)*

only correlation we were able to make in this category

ALL STRONG CORRELATIONS
Results: Unilateral (SL CMJ) vs bilateral propulsive

Drop Jump Propulsive

Single Leg Countermovement Jump Propulsive

R = .350 (SLCMJ – DJ)

.321 (SLCMJ - CMJ)

.278 (SLCMJ – RBJ)

ALL MODERATE/WEAK CORRELATIONS
Results: Propulsive vs. Braking

\[R = 0.485^* \] (DJ)
\[0.440^* \] (RBJ)

*only were able to make two correlations in this category
Conclusions

<table>
<thead>
<tr>
<th>Research Question</th>
<th>Conclusion(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Are any functional movement assessments interchangeable?</td>
<td>• - Bilateral movements correlate strongly \rightarrow potentially interchangeable</td>
</tr>
<tr>
<td></td>
<td>• - Bilateral vs. Unilateral correlate weakly \rightarrow not interchangeable</td>
</tr>
<tr>
<td>2. Any additional info from dividing into braking and propulsive?</td>
<td>• - Yes. Braking vs. Propulsive moderately correlated \rightarrow not interchangeable</td>
</tr>
</tbody>
</table>

All movements and phases provide unique information \rightarrow should be used together
Genetic Basis for Functional Asymmetry

- Early developmental signaling pathways \rightarrow L/R body asymmetry \rightarrow “handedness”
- Handedness could be associated with:
 - Asymmetry in muscular strength
 - Asymmetry in neuromuscular control
Other Important Factors to Consider

• Leg-Length Asymmetry
• Adaptive Asymmetries in certain sports
 • Baseball, Australian Football, Cricket Fast Bowlers
Future Directions

• Address limitations: control for prior activity, warmup type/duration, obtain medical records

• Larger sample size to perform inter-class correlations
 • Sex-Specific/Sport-Specific/Position-specific
 • Leg-length asymmetry classes
 • Measure limb strength and neurological control

• 3-D motion capture (Kinematic Variables)

(Cazzola, 2010)
Acknowledgements

• Dr. Raoul Reiser, Dept. of Health and Human Sciences, Colorado State University
• Dr. Emilie Gray, Dept. of Organismal Biology and Ecology, Colorado College
• Colorado State University Dept. of Athletics
• Colorado State University Dept. of Health and Human Science
• Gabrielle Hess, Caitlyn Helwig, Ross Lohrich
• Colorado College Dept. of Organismal Biology and Ecology
THANK YOU!

Any questions please let me know:

t_calderon@coloradoc College.edu
Supplemental Equations, etc.

• Asymmetry Equation: \[\frac{((\text{Left limb force} - \text{Right Limb force})/((0.5)(\text{Right limb force} + \text{Left limb force}))\times100=\% \text{ asymmetry} \]