Disease-driven dynamics of evolutionary rescue from a game theoretic perspective

Brandon Grandison1,2, Hannah Yin1,3, Ana Kilgore1,4, Jing Jiao1, & Nina Fefferman1,5

1National Institute for Mathematical and Biological Synthesis, 2University of Florida, 3Tufts University, 4Colorado College, 5University of Tennessee Department of Ecology & Evolutionary Biology

OBJECTIVE
Integrate epidemiology with game theory to find conditions and time scales for evolutionary rescue

ASSUMPTIONS
• Continuous, direct disease transmission
• Recovery confers immunity
• Uniform susceptibility across life history
• No vertical transmission

RESULTS
In the presence of a highly virulent disease, there exists the possibility for a population with biologically plausible parameters to undergo evolutionary rescue.

CONCLUSIONS
1. Evolutionary rescue can occur given our relative payoffs and selected parameters
2. How well a disease persists impacts whether evolutionary rescue can occur and its time scale

FUTURE WORK
• Bifurcation analysis to predict regime shifts
• Add disease vectors, life history, and dynamic carrying capacity to test effects of coevolution and climate change
• Add intermittent outbreaks, predator-prey dynamics, genotypic strategies, and gene flow

SELECTED REFERENCES

Acknowledgements
This work was conducted with funding from the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation through NSF Award #DBI-1300426, with additional support from National Security Agency and The University of Tennessee, Knoxville.