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1. Introduction

The two following major problems concerning factorizations of square matrices over
rings have been considered since the middle of the 1960’s.

(P1) Characterize the integral domains R such that every square invertible matrix over
R is a product of elementary matrices.

(P2) Characterize the integral domains R such that every square singular matrix over
R is a product of idempotent matrices.

When R is a field, Gauss Elimination produces a factorization into elementary matrices
of any invertible matrix and the structure of the general linear groups GLn(R) has
been studied fairly extensively since a long while (see [11]). The investigation of integral
(even non-commutative) domains satisfying the property in (P1) started in 1966 with
the fundamental paper by Cohn [7], who called these domains generalized Euclidean
(GE-rings, for short), due to the fact that Euclidean domains provide the first well-known
example of GE-rings different from fields. Cohn’s paper gave rise to ample and deep
investigations on the structure of the general linear groups and the special linear groups
over various rings.

In the same year, 1966, Howie [15] produced the starting point to attack the second
problem, proving the purely set-theoretical result that every transformation of a finite set
which is not a permutation can be written as a product of idempotents. One year later,
J.A. Erdos [12] proved that every singular matrix over a field is a product of idempotent
matrices, thus initiating the researches on problem (P2).

In 1991 John Fountain, extending in [13] Erdos’ result and results by Dawlings [10]
for linear transformations of vector spaces, proved the following

Theorem 1.1. (See Fountain [13].) Let R be a principal ideal domain and n � 2 an
integer. The following conditions are equivalent:

(IDn) Every singular n × n matrix of rank n − 1 with entries in R is a product of
idempotent matrices, of rank n− 1.

(Hn) For every endomorphism α of Rn of rank n− 1, there exists an endomorphism β

with Ker(β) = Ker(α) and Im(β) = Im(α)∗, such that β is a product of idempo-
tent endomorphisms of rank n− 1.

(SCn) For any pure submodules A, B of the free R-module Rn, of ranks n − 1 and 1
respectively and such that A∩B = 0, there is a sequence of direct decompositions
of Rn, with A = A1 and B = Bk:

Rn = A1 ⊕B1 = A2 ⊕B1 = A2 ⊕B2 = · · · = Ak ⊕Bk−1 = Ak ⊕Bk.

In condition (Hn), which is slightly rephrased, but equivalent, to the original condition
in [13], Im(α)∗ denotes the pure closure of the submodule Im(α) in Rn. Fountain’s proof
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makes use of the semigroup structure of Mn(R) and of the fact that, if R is a PID, then
Mn(R) is an abundant semigroup. The characterization in the above theorem is used
by Fountain to show that singular matrices, with entries either in a discrete valuation
domain or in the ring of integers, are products of idempotent matrices.

Two years later, in 1993, Theorem 1.1 was extended by Ruitenburg in [24] to Bézout
domains, that is, domains whose finitely generated ideals are principal. He called the free
module Rn over the Bézout domain R weakly complementary if condition (SCn) holds.
But the most relevant contribution of Ruitenburg’s paper was to establish a connection
of the three conditions in Fountain’s theorem with the following condition (GEn), thus
showing an intimate relationship of the two problems (P1) and (P2), when the ground
ring is a Bézout domain.

(GEn) Every invertible n× n matrix M is a product of elementary matrices.

The main result in Ruitenburg’s paper is the following.

Theorem 1.2. (See Ruitenburg [24].) For a Bézout domain R the following conditions
are equivalent:

(i) for any assigned integer n � 2, (IDm) holds for every m � n;
(ii) for any assigned integer n � 2, (Hm) holds for every m � n;
(iii) for any assigned integer n � 2, (SCm) holds for every m � n;
(iv) (GEn) holds for every integer n > 0.

The equivalence of (i), (ii) and (iii) in the above theorem was proved by Ruitenburg fol-
lowing the methods used by Fountain in the case of R a PID. The proof that (iii) implies
(iv) is made only for (GE2), and then a celebrated result by Kaplansky [17, Theorem 7.1],
valid for matrices over Hermite rings, allows to lift the result to (GEn) for an arbitrary n.
That proof, as well as the proof that (iv) implies (iii), makes use of matrix theoretical
methods.

Examples of generalized Euclidean domains include, besides the Euclidean ones, the
domains with stable range one, hence, in particular, all semi-local domains (that is,
domains with finite maximal spectrum; see [20] and [14, V.8.2]). By Ruitenburg’s The-
orem 1.2, the Bézout domains of this type also provide examples of rings satisfying
condition (IDn) for all n. Cohn proved that the rings of algebraic integers of imag-
inary quadratic number fields that are not Euclidean are not generalized Euclidean,
as well. So, among the rings of algebraic integers of Q(

√
d ) with d < 0, those with

d = −19,−43,−67,−163 are examples of PID’s which fail to be generalized Euclidean
(see [23]).

The aim of the present paper is to give some answers to the following natural ques-
tions.
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1) What can be said on problem (P1) in general or, more precisely, on the four conditions
(Hn), (SCn), (GEn), (IDn) and their mutual relationships, in the context of general
integral domains?

2) Can we better understand generalized Euclidean domains, even in case they are
Bézout domains or PID’s?

3) What can be said on problem (P2) in general?

We will not investigate the problem of finding the minimum number of factors in
the decomposition of a matrix as a product of invertible matrices or as a product of
idempotent matrices. These kinds of questions have been discussed, for instance, by
Carter and Keller [4], Laffey [19], Vaserstein and Wheland [25].

In the very recent paper [1], Alahmadi, Jain and Leroy studied the products of
idempotent matrices; their main focus was on matrices over non-commutative rings,
in particular, non-commutative Bézout domains.

We wish to thank the referee for having informed us about the preceding papers, and
for other useful comments and suggestions.

In the preliminary Section 2, notation, terminology, basic facts and some easy results
used in the paper are collected. In particular, we point out that a result proved by Laffey
in [18] has an immediate generalization from Euclidean to Bézout domains; hence, for
matrices over these domains, it is possible to lift condition (ID2) to condition (IDn), for
all n > 0.

In Section 3 we define two conditions, denoted by (SFCn) and (HFn), that are suitable
modifications for general domains of conditions (SCn) and (Hn) above. Then we gener-
alize Ruitenburg’s result showing that, over any domain R, it is equivalent to say that
the conditions (GEn), (SFCn) and (HFn) hold for all n > 0. Thus condition (SCn), in-
troduced by Fountain to deal with products of idempotent matrices over PIDs, is in fact
applicable to general domains, in a slightly modified version, in connection with prod-
ucts of elementary matrices. However, since over Bézout domains (SFCn) and (HFn)
are equivalent to (SCn) and (Hn), respectively, we also get the main achievement of
Ruitenburg’s theorem: namely, conditions (GEn) and (IDn) are equivalent over Bézout
domains.

It remains to investigate condition (IDn) outside the class of Bézout domains. Since
the case of 2× 2 matrices is highly illuminating for the general situation, and in view of
the generalization of Laffey’s result to Bézout domains recalled in Section 2, in the re-
maining sections we investigate condition (ID2). We recall that this property was recently
examined by Bhaskara Rao in [3].

Actually, the results in [18,24,3] suggest that a domain R satisfying property (ID2)
should necessarily be a Bézout domain. In Section 4 we stress the likelihood that this
feeling is correct, by examining a suitable property of a domain R, called (princ). We
prove that factorial domains and projective-free domains (in particular, local domains)
satisfy this property. Our main result is that a domain satisfying property (princ) and
condition (ID2) is necessarily a Bézout domain. Note that in the case of projective-free
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domains, a similar result was established in [3]. As a consequence, we derive that all local
domains which fail to be valuation domains provide examples of generalized Euclidean
domains not satisfying condition (ID2).

In Section 5 we characterize 2 × 2 matrices which are products of basic idempotents,
that is, idempotent matrices with a zero on the diagonal. We prove that all 2×2 singular
matrices over the domain R are products of basic idempotents exactly if R is a valuation
domain.

Finally, in Section 6 we consider integral domains admitting a weak Euclidean algo-
rithm, which O’Meara in [22] called domains satisfying the Euclidean chain condition;
they are necessarily Bézout domains. We remark that in [22] O’Meara proved that the
PIDs admitting a weak Euclidean algorithm are exactly those satisfying condition (GE2);
his proof extends verbatim to the case of Bézout domains. Here we give a direct proof
that a Bézout domain admitting a weak Euclidean algorithm satisfies condition (ID2).
We show that some classes of domains admit a weak Euclidean algorithm, namely, spe-
cial intersections of infinitely many valuation domains, and pull-back rings of the form
D + XQ�X�, where D is an integral domain admitting a weak Euclidean algorithm,
and Q is the field of quotients of D. Note that these pull-back rings are reminiscent of
the examples obtained by Chen and Leu [5], where formal power series are replaced by
polynomials. As a by-product of O’Meara’s result, we can show that a Bézout domain
that is generalized Euclidean is also an elementary divisor ring (see [17]); the converse
is not true.

2. Notation and preliminary facts

By R we will always denote an integral domain, and by U(R) the multiplicative group
of its invertible elements. For a domain R and an integer n � 2, we denote by Rn the free
R-module of the column vectors v = [v1v2 . . . vn]T with n coordinates vi ∈ R. Mn(R)
denotes, as usual, the R-algebra of the n × n matrices with entries in R. Matrices are
denoted by capital bold-face letters, like M. Differently from Fountain and Ruitenburg,
we prefer to operate with column block decompositions of matrices, so M ∈ Mn(R) will
be written by columns M = [a1a2 . . .an]. If v is a column vector, its transpose row vector
is denoted by vT ; In denotes the identity matrix of order n. The (column) vectors of the
canonical basis of Rn are denoted by ei (1 � i � n). A matrix M is said to be singular
if det(M) = 0; this amounts to say that its columns are linearly dependent over R.

The elementary n × n matrices, usually denoted by E, are of three different types:
(i) transpositions Pij (i �= j); (ii) dilatations Di(u), where u ∈ U(R); (iii) transvections
Tij(r) (i �= j), where r ∈ R. All these matrices are invertible, since their determinants
are units of R.

Recall that a Bézout domain is an integral domain whose finitely generated ideals are
principal. The ring Z+XQ[X], consisting of the polynomials over Q with constant term
in Z, is the standard example of a non-local Bézout domain that is not a principal ideal
domain (the ideal XQ[X] is not finitely generated).
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For modules over Bézout domains and more generally over Prüfer domains, the con-
cept of purity (in Cohn sense) coincides with the generally weaker notion of relative
divisibility, where M is a relatively divisible R-submodule of N (RD-submodule, for
short) if M ∩ rN = rM for every r ∈ R (see [14]). Moreover, pure submodules (in Cohn
sense) of free modules of finite rank over integral domains are direct summands (see
[14, VI.9.6]).

Now we prove some easy results on 2 × 2 singular matrices. The next proposition is
folklore; its proof follows from a direct matrix computation.

Proposition 2.1. Let R be an integral domain, T =
(
a b
c d

)
a non-zero and non-identity

2 × 2 matrix with entries in R. Then T is idempotent if and only if d = 1 − a and
a(1 − a) = bc.

A 2 × 2 matrix T over R is called column–row if there exist a, b, x, y ∈ R such that

T =
(
x

y

)
( a b ) =

(
xa xb

ya yb

)
.

Proposition 2.2. Let R be an integral domain, T a singular matrix in M2(R), such that
the ideal of R generated by the entries of its first row is principal. Then T is a column–row
matrix. Moreover, if T is an idempotent column–row matrix, then also the converse is
true.

Proof. Say T =
(
a0 b0
c d

)
, where 〈a0, b0〉 = xR. Then a0 = xa and b0 = xb, with 〈a, b〉 = R,

say 1 = λa+μb for suitable λ, μ ∈ R. From a0d− b0c = 0 we get ad = bc. It follows that
c = cλa + cμb = cλa + μda, hence we get y = c/a ∈ R. We readily conclude that c = ya

and d = yb, so T =
( xa xb
ya yb

)
is a column–row matrix.

Assume now that T is idempotent and that we may write T =
( xa xb
ya yb

)
, for suitable

x, y, a, b ∈ R. From T idempotent it follows that yb = 1 − xa, hence 〈a, b〉 = R, so that
〈xa, xb〉 = xR. �

The following lemma, whose proof is trivial, will be useful for our discussion.

Lemma 2.3. Let R be an integral domain, S =
( xa xb
ya yb

)
a column–row matrix (a, b, x,

y ∈ R). Pick any U =
( r s
t u

)
in M2(R). Then US =

(
x′a x′b
y′a y′b

)
, for suitable x′, y′ ∈ R, so

it is a column–row matrix, and, if 〈a, b〉 is a principal ideal of R, then the ideal generated
by the entries of the first row of US is principal, as well.

Proof. By a direct computation we get

US =
(

(rx + sy)a (rx + sy)b
)
. �
(tx + uy)a (tx + uy)b
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In [18], Laffey proved that a Euclidean domain satisfies (IDn) for every n > 0. A crucial
part of his proof was a reduction from (IDn) to (ID2). Bhaskara Rao, [3], observed that
Laffey’s reduction argument extends to the case when R is a PID. As a matter of fact,
the result that follows is valid even assuming that R is a Bézout domain. We thought it
convenient to point out why one can make this more general assumption.

Proposition 2.4. Let R be a Bézout domain. If every 2 × 2 singular matrix with entries
in R is a product of idempotent matrices, then every n× n singular matrix with entries
in R is a product of idempotent matrices, for any positive integer n.

Proof. We assume that property (ID2) holds and prove (IDn), by induction on n � 2.
Let A be any singular matrix in Mn(R). The starting point of Laffey’s argument is
to consider a row vector vT = (v1 . . . vn), vi ∈ R, such that vTA = 0. Since R is a
Bézout domain, we may assume that 1 ∈ 〈v1, . . . , vn〉, i.e., vT is unimodular. Then the
unimodular row lemma [21, Theorem II.1], valid for Bézout domains, allows us to find
a unimodular matrix T whose last row is vT . From this fact, using matrix computation
we derive that every idempotent matrix Y ∈ Mk(R) is similar to a diagonal matrix( Ih 0

0 0

)
, where h is the rank of Y (Lemma 1 in [18]). Then the inductive hypothesis and

a matrix theoretical argument (valid over any integral domain, see [18]), shows that A
is necessarily a product of idempotents, as soon as this property holds for every singular
2 × 2 matrix over R. �

To make this paper self-contained, we prove that property (H2) is equivalent to (ID2),
when the ground ring is a Bézout domain. Under such circumstances, the preceding
proposition ensures that also (IDn) holds, for every n > 0. Of course, this equivalence is
part of Ruitenburg’s Theorem 1.2.

Lemma 2.5. Let R be an integral domain, a, b, x, y ∈ R. The matrix A =
( xa xb
ya yb

)
is a

product of idempotents whenever the matrices
(
a b
0 0

)
and

( x 0
y 0

)
are products of idempo-

tents.

Proof. Just observe that
(
xa xb

ya yb

)
=

(
x 0
y 0

)(
a b

0 0

)
. �

Proposition 2.6. For a Bézout domain R, property (H2) is equivalent to property (ID2).
In this case, also (IDn) is satisfied, for every n > 0.

Proof. One implication is trivial. So it is enough to assume that condition (H2) holds,
and show that any non-zero singular matrix A ∈ M2(R) is a product of idempotent
matrices. Since R is a Bézout domain, from Proposition 2.2 we get A =

( xa xb
ya yb

)
, for

suitable a, b, x, y ∈ R. It suffices to show that any matrix of the form
(
a b

)
is a product
0 0
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of idempotents, since, by transposition, the same will be true for
( x 0
y 0

)
, and for A, by

Lemma 2.5. In conclusion, we may assume that

A =
(
a b

0 0

)
, a, b ∈ R.

Let α be the endomorphism of R2 whose associated matrix with respect to the canonical
basis is A. By hypothesis, there exists an endomorphism β with Ker(β) = Ker(α) and
Im(β) = Im(α)∗, such that β is a product of idempotent endomorphisms, that is, the
matrix B associated to β with respect to the canonical bases is a product of idempotent
matrices. We claim that α = tβ, where t is a non-zero element of R. For, if R2 = xR⊕yR,
where yR = Ker(α), then α(x) = tβ(x) for a suitable non-zero at ∈ R. Thus, given
v = rx + sy ∈ R2 (r, s ∈ R), we get

α(v) = rα(x) + sα(y) = raβ(x) = t
(
rβ(x) + sβ(y)

)
= tβ(v).

Now, from a direct computation, we see that A = tB equals UB, where

U =
(
t 0
0 0

)
=

(
1 t− 1
0 0

)(
1 0
1 0

)
,

and the factors on the right are idempotent matrices over any domain, by Proposition 2.1.
It follows that A is a product of idempotent matrices. The last statement follows from
Proposition 2.4. �
3. A generalization of Ruitenburg’s result

In the next Theorem 3.4 we will deal with two equivalent properties, denoted by
(SFCn) and (HFn), that generalize the above defined properties (SCn) and (Hn), respec-
tively. We immediately remark that these properties coincide in the context of Bézout
domains.

Theorem 3.4 generalizes Ruitenburg’s result, valid for Bézout domains, to any integral
domain; we give a direct and self-contained proof, that doesn’t use semigroup theoretical
methods.

We need three preliminary lemmas.

Lemma 3.1. Let E = [A1A2] and F = [B1B2] be two invertible n × n matrices, with
entries in a domain R, and A1 and B1 blocks of size n× r.

(1) If A2 = B2, the last n − r columns of the matrix F−1E are equal to the vectors
er+1, . . . , en.

(2) If A1 = B1, the first r columns of the matrix E−1F are equal to the vectors
e1, . . . , er.
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Proof. (1) Let F−1 = [XT
1 XT

2 ]T ; then from F−1F = In we get X1B2 = O and
X2B2 = In−r. From these equalities and from A2 = B2 it follows immediately that the
last n− r columns of F−1E are equal to the coordinate vectors er+1, . . . , en.

(2) Let E−1 = [YT
1 YT

2 ]T ; then E−1E = In implies that Y1A1 = Ir and Y2A1 = O.
From this equality and from A1 = B1 it follows that the first r columns of E−1F equal
e1, . . . , er. �
Lemma 3.2. Let R be a domain and Rn = X ⊕ Y a free direct decomposition, where
X =

⊕
1�i�r aiR and Y =

⊕
r+1�i�n aiR. Let M = [a1a2 . . .an] be the associated

invertible matrix. If E is an elementary matrix, then the direct decomposition of Rn

associated to the product matrix ME is:

(a) Rn = X ⊕ Y if E is either a dilatation Dj(u) or a transvection Tij(r) with i, j � r

or i, j > r;
(b) Rn = X ⊕ Y ′ if E is a transvection Tij(r) with i � r < j;
(c) Rn = X ′ ⊕ Y if E is a transvection Tij(r) with j � r < i.

Proof. It is enough to note that in case (a) the post-multiplication by E acts as a
modification of the j-th column, that does not change the summands X and Y . In
case (b), the modification of the j-th column of M modifies the summand Y into a
new summand Y ′, but the summand X remains the same, and in case (c) the reverse
happens. �

The next result follows from the general theory of semigroups (see Lemma 7 in [24],
which refers to Theorem 2.17 in [6]); we give a direct proof in our particular setting.

Lemma 3.3. Let R be an integral domain, and α, β two endomorphisms of Rn such
that Im(α) and Im(β) are free summands of Rn of the same rank. If the endomorphism
βα satisfies Ker(βα) = Ker(α) and Im(βα) = Im(β), then there exists an idempotent
endomorphism η such that Im(η) = Im(α) and Ker(η) = Ker(β).

Proof. We firstly show that Im(α) ∩ Ker(β) = 0. For, let z = α(x) be such that β(z) =
β(α(x)) = 0; then x ∈ Ker(βα) = Ker(α), so 0 = α(x) = z. So we have that Im(α) ⊕
Ker(β) � Rn. But Im(α) is a summand of Rn, by hypothesis, and Ker(β) is a summand
by the projectivity of Im(βα) = Im(β). We claim that from these facts the equality
Im(α) ⊕ Ker(β) = Rn follows.

In fact, given 0 �= z ∈ Rn and since rk(Im(α) ⊕ Ker(β)) = n, there exists 0 �= r ∈ R

such that rz = α(x) + y, with β(y) = 0. Then rβ(z) = β(rz) = βα(x), and since
β(z) = βα(x′) for some x′ ∈ Rn, we get that x− rx′ ∈ Ker(βα) = Ker(α). So rα(x′) =
α(rx′) = α(x), and consequently the RD-divisibility of Ker(β) in Rn gives that y = ry′

for some y′ ∈ Ker(β). The conclusion is that z = α(x′) + y′ ∈ Im(α) ⊕ Ker(β), as
claimed. Therefore the required idempotent η is the projection onto Im(α) with kernel
Ker(β). �
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Theorem 3.4. For an integral domain R the following conditions are equivalent:

(HFn) For any free direct summands A, B of the free R-module Rn, of ranks r and
n − r respectively (1 � r < n), there exists an endomorphism β of Rn with
Ker(β) = B and Im(β) = A, which is a product of idempotent endomorphisms
of rank r.

(SFCn) For any free direct summands A, B of the free R-module Rn, of ranks r and n−r

respectively (1 � r < n), there exist direct decompositions of Rn, with A = A1
and B = Bk: Rn = A1⊕B1 = A2⊕B1 = A2⊕B2 = · · · = Ak⊕Bk−1 = Ak⊕Bk.

(GEn) Every invertible n× n matrix M is a product of elementary matrices.

Proof. (HFn) ⇒ (SFCn). Let A, B be free direct summands of Rn of ranks r and n− r,
respectively. By hypothesis, there exists an endomorphism β of Rn with Ker(β) = B and
Im(β) = A, which is a product of idempotent endomorphisms of the same rank r, say
β = π1 . . . πk. For each 1 � i � k, let Rn = Ai ⊕Bi be the direct decomposition induced
by the idempotent endomorphism πi, that is, Ai = Im(πi) and Bi = Ker(πi). Since all
the ranks equal r, we get A = A1 and B = Bk, and also Ai = Im(πi · πi+1) and Bi+1 =
Ker(πi ·πi+1), for every i < k. By Lemma 3.3, there exists an idempotent endomorphism
ηi of Rn such that Ker(ηi) = Bi and Im(ηi) = Ai+1, hence Rn = Ai+1 ⊕Bi, as desired.

(SFCn) ⇒ (HFn). Let A, B be free direct summands of Rn of ranks r and n − r,
respectively. By hypothesis, there is a sequence of direct decompositions of Rn, with
A = A1 and B = Bk:

Rn = A1 ⊕B1 = A2 ⊕B1 = A2 ⊕B2 = · · · = Ak ⊕Bk−1 = Ak ⊕Bk.

For each i � k, let πi : Rn → Rn be the projection such that Im(πi) = Ai and
Ker(πi) = Bi. The map β = π1 . . . πk is a product of idempotents, with Ker(β) ⊆
B = Ker(πk) and Im(β) ⊆ A = Im(π1). We must show that these two inclusions are
actually equalities. We induct on k, the case k = 1 being trivial. Let k > 1; by the
inductive hypothesis, setting γ = π2 . . . πk, we have Ker(γ) = B and Im(γ) = A2 (note
that A2 is a free summand of R2, being isomorphic to A). Since β = π1 · γ, we deduce:

A = π1
(
R2) = π1(A2 ⊕B1) = π1(A2) = π1

(
γ
(
R2)) = β

(
R2),

and therefore Im(β) = A. If Ker(β) strictly contains B, then Im(β) has rank strictly
less than r, contradicting the fact that Im(β) = A. We conclude that Ker(β) = B.

(SFCn) ⇒ (GEn). We want to show that an invertible matrix M = [a1a2 . . .an] ∈
Mn(R) (n � 1) is a product of elementary matrices. We make induction on n, the
case n = 1 being trivial. So assume n � 2. Without loss of generality, we will assume
that (

⊕
1�i�n−1 aiR) ∩ enR = 0, where en is the last coordinate vector: for, if en =∑

1�i�n riai (ri ∈ R), choose rj �= 0; then the matrix MPjn satisfies the required
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condition, and M is a product of elementary matrices if and only if such is MPjn. Let
A =

⊕
1�i�n−1 aiR and B = enR; then the condition (SFCn) provides a sequence of

direct decompositions of Rn:

A1 ⊕B1 = A2 ⊕B1 = A2 ⊕B2 = · · · = Ak ⊕Bk−1 = Ak ⊕Bk (1)

where A = A1 and B = Bk. For 1 � j � k, let Aj =
⊕

1�i�n−1 aijR and Bj = bjR,
where we set ai = ai1 for all i and bk = en.

Let us consider the following matrices associated to the above direct decompositions:

Ej = [a1ja2j . . .an−1jbj ], 1 � j � k

Fj = [a1,j+1a2,j+1 . . .an−1,j+1bj ], 1 � j � k − 1

and set F0 = M (i.e., b0 = an). All the matrices Ej and Fj are invertible. Consider now
the matrices

Pj = F−1
j Ej , 1 � j � k

Qj = E−1
j+1Fj , 0 � j � k − 1.

We claim that the matrices Pj and Qj are products of elementary matrices. In fact,
Lemma 3.1, applied with r = n−1, shows that the last column of each matrix Pj equals
the vector en, while the first n− 1 columns of each matrix Qj are equal to the vectors
e1, . . . , en−1. The principal submatrix of Pj obtained by deleting last row and column is
an invertible matrix of size n− 1, so by induction it is a product of elementary matrices.
Then standard arguments using Gauss elimination show that Pj itself is a product of
elementary matrices. The last row of each matrix Qj is a vector ujeTn , with uj necessarily
a unit, so a similar argument applies to prove that the matrices Qj are also product of
elementary matrices.

Now, starting from the equality M = F0 = E1Q0, we obtain the factorizations:

M =
(
EkE−1

k

)(
Fk−1F−1

k−1
)
. . .

(
E2E−1

2
)(

F1F−1
1

)
E1Q0

= Ek

(
E−1

k Fk−1
)(

F−1
k−1Ek−1

)
. . .

(
E−1

2 F1
)(

F−1
1 E1

)
Q0

= EkQk−1Pk−1 . . .Q1P1Q0.

Since the last column of Ek is the vector en, the inductive argument used above shows
that it is a product of elementary matrices, hence the same is true for the matrix M.

(GEn) ⇒ (SFCn). Let A, B be free direct summands of Rn, of ranks r and n − r

respectively. Let Rn = A ⊕ X = Y ⊕ B and let M and N be the matrices associ-
ated to the direct decompositions Rn = A ⊕ X and Rn = Y ⊕ B, respectively. The
invertible matrix X = N−1M is a product of elementary matrices by hypothesis, so
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M = NX = NE1E2 . . .Ek, where we can assume each matrix Ei being either a dilata-
tion or a transvection, since it is well-known that any permutation matrix is a product of
matrices of this sort. Lemma 3.2 shows that each post-multiplication of NE1E2 . . .Ei−1
by Ei gives rise to an invertible matrix associated to a direct decomposition of Rn that
modifies, in the previous decomposition, either the summand of rank r, or the sum-
mand of rank n − r. So we pass from the decomposition Rn = Y ⊕ B associated to N
to the decomposition Rn = A ⊕ X associated to M with the desired sequence of free
decompositions. �

Note that some arguments in Theorem 3.4 have been inspired by Ruitenburg’s tech-
niques. Also note that, proving (SFCn) ⇒ (GEn), we use only part of the strength of
condition (SFCn), when we assume that the summand A has rank n− 1. Moreover, the
reverse implication is proved for a summand A of arbitrary rank. As a consequence, we
see that, if condition (SFCn) is assumed just for rk(A) = n − 1, then it holds for A of
arbitrary rank.

When R is a Bézout domain, it is readily verified that the above properties (SFCn)
and (HFn) coincide, respectively, with (SCn) and (Hn), defined in the introduction.
This fact follows since, as recalled in the preceding section, the concepts of purity and
relative divisibility coincide for modules over Prüfer domains, and pure submodules of
free modules of finite rank over integral domains are direct summands.

As a consequence of the preceding theorem, we get the main achievement of Ruiten-
burg’s Theorem 1.2.

Theorem 3.5 (Ruitenburg). Let R be a Bézout domain. Then R is generalized Euclidean
if and only if every singular matrix with entries in R is a product of idempotent matrices.

Proof. Assume that R satisfies (GE2); then, by Theorem 3.4, it satisfies (HF2), which,
over Bézout domains, is equivalent to (H2). Thus (ID2) holds, by Proposition 2.6, and
therefore, from Proposition 2.4 we get (IDn), for all n > 0.

Conversely, from (ID2) we get (HF2), whence Theorem 3.4 yields (GE2). Then, in
view of the above recalled Kaplansky’s result in [17], (GEn) is valid for all n > 0. �
4. The properties (princ) and (ID2)

In the remainder of the paper we will deal with products of idempotent matrices,
a notion related to products of elementary matrices, via Ruitenburg’s Theorem 1.2, or
its more general form Theorem 3.4. Actually, motivated by Proposition 2.4, we will focus
on 2 × 2 idempotent matrices.

The results in [18,24,3] suggest the following natural conjecture: “If R satisfies prop-
erty (ID2), then it is a Bézout domain.”

The purpose of this section is to add likelihood to this conjecture, by an examination
of the following property of an integral domain R:
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(princ) If a, b, c ∈ R satisfy the relation a(1 − a) = bc, then the ideals 〈a, b〉, 〈a, c〉,
〈a− 1, b〉, 〈a− 1, c〉 of R are all principal.

Obviously, any Bézout domain satisfies the above property. Let us see that (princ) is
equivalent to a weaker condition.

Proposition 4.1. An integral domain R satisfies (princ) if and only if the relation a(1 −
a) = bc (a, b, c ∈ R) implies that 〈a, b〉 is a principal ideal of R.

Proof. Only sufficiency needs a proof. To simplify the notation, we write d = 1 − a.
Assume that 〈a, b〉 = xR. We must prove that 〈a, c〉, 〈d, b〉, 〈d, c〉 are principal ideals. We
have a = xa1 and b = xb1, with 〈a1, b1〉 = R, say 1 = λa1 + μb1 for suitable λ, μ ∈ R.
From ad− bc = 0 we get a1d = b1c. It follows that c = cλa1 + cμb = cλa1 + μda1, hence
we get y = c/a1 ∈ R. We readily conclude that c = ya1 and d = yb1, so 〈d, c〉 = yR.
Moreover the above computations yield

〈a, c〉 = 〈xa1, ya1〉, 〈d, b〉 = 〈yb1, xb1〉.

So, if we show that 〈x, y〉 = R, we can conclude that 〈a, c〉 = a1R, 〈d, b〉 = b1R, as
desired. And, in fact, yb1 = d = 1 − a = 1 − xa1 shows that 1 ∈ 〈x, y〉. �

Besides Bézout domains, other large classes of integral domains satisfy (princ).

Proposition 4.2. An integral domain R satisfies (princ) whenever its projective two-
generated ideals are free, i.e., principal.

Proof. Let a(1 − a) = bc for some a, b, c ∈ R. In order to show that R satisfies (princ),
by Proposition 4.1 if suffices to verify that the ideal 〈a, b〉 is principal. We may assume
that a �= 0. From a(1 − a) = bc it follows that aR = 〈a2, bc〉, hence

〈a, b〉〈a, c〉 =
〈
a2, ac, ab, bc

〉
= aR.

Thus 〈a, b〉 is an invertible ideal, with inverse 〈1, c/a〉, hence, by hypothesis, it is free.
We conclude that R satisfies (princ). �

Recall that a ring R is called projective-free if finitely generated projective R-modules
are free.

Proposition 4.3. An integral domain R satisfies (princ) when

(a) R is factorial;
(b) R is projective-free.

In particular, a local domain satisfies (princ).
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Proof. (a) If R is factorial, then its invertible ideals are free. So R satisfies (princ) by
Proposition 4.2.

(b) If R is projective-free, then it satisfies (princ) by Proposition 4.2.
Finally, since a local domain R is projective-free (see [14, VI.1.9]), the last claim

follows from (b). However, we can readily give a direct proof. In fact, let a(1 − a) = bc

for some a, b, c in the local domain R. If a is a unit, then 〈a, b〉 = R. If not, then 1 − a

is a unit, so a = bc(1 − a)−1 yields 〈a, b〉 = bR. �
Let us observe that there exist factorial domains that are not projective-free. We

thank Roger Wiegand for suggesting to us the following example.

Example 4.4. Let X, Y , Z be indeterminates over the real numbers R. Consider the
ring D = R[X,Y, Z] and its principal ideal I generated by X2 + Y 2 + Z2 − 1. Then
the coordinate ring of the real 3-dimensional sphere R = D/I is factorial, but not
projective-free.

The next proposition shows a close relationship between idempotent column–row ma-
trices and property (princ).

Proposition 4.5. Let R be an integral domain. Then every idempotent matrix T ∈ M2(R)
is a column–row matrix if and only if R satisfies (princ). In such case, the entries of
rows and columns of an idempotent matrix generate principal ideals.

Proof. Assume that R satisfies (princ), and pick any idempotent matrix, say T =( a b
c 1−a

)
. Then from a(1 − a) = bc and property (princ) we get that the ideals 〈a, b〉,

〈a, c〉, 〈a− 1, b〉, 〈a− 1, c〉 of R are all principal. Since we are in the position to apply the
first part of Proposition 2.2, we conclude that T is a column–row matrix. Conversely,
assume that every idempotent matrix T =

( a b
c 1−a

)
is column–row. Then the second

part of Proposition 2.2 shows that 〈a, b〉 is a principal ideal. We readily conclude that R
satisfies (princ). �

For convenience, we denote by ID2(R) the set of the 2× 2 matrices with entries in R

that are products of idempotent matrices. So, under this notation, an integral domain
has property (ID2) exactly when every singular matrix of M2(R) lies in ID2(R).

In the next theorem we prove that, if R satisfies both (ID2) and (princ), then R is
necessarily a Bézout domain.

Theorem 4.6. Let R be an integral domain that satisfies property (princ). Then every
S ∈ ID2(R) is a column–row matrix and the entries of its first row generate a principal
ideal. As a consequence, if R satisfies property (ID2), then R is necessarily a Bézout
domain.
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Proof. If S ∈ ID2(R), then S may be obtained starting with an idempotent matrix T and
multiplying on the left by a suitable matrix (product of idempotents). Proposition 4.5
shows that T =

( xa xb
ya yb

)
, for some a, b, x, y ∈ R, where 〈xa, xb〉 is a principal ideal. Then

from Lemma 2.3 we get S =
(
x′a x′b
y′a y′b

)
for suitable x′, y′ ∈ R, and 〈x′a, x′b〉 is a principal

ideal. If now R is not a Bézout domain, we pick a two-generated non-principal ideal,
say 〈f, g〉. Then the matrix

(
f g
0 0

)
cannot lie in ID2(R), so R does not satisfy property

(ID2). �
From the above theorem and Proposition 4.3 we immediately get the following corol-

lary.

Corollary 4.7. If the integral domain R is either factorial or projective-free and satisfies
(ID2), then R is a Bézout domain.

We recall that for R projective-free the above result was proved by Bhaskara Rao [3],
using different techniques.

Example 4.8. We give an example of a Dedekind domain R that does not satisfy (princ).
Let R = Z[

√
−5 ], and consider the matrix

T =
(

3 1 +
√
−5

−1 +
√
−5 −2

)
.

Then T is idempotent, since 3(1− 3) = (1+
√
−5 )(−1+

√
−5 ), and 〈3, 1+

√
−5 〉 is not

a principal ideal of R. This example also shows that, when R is not a factorial domain,
a matrix of the form

(
a b
0 0

)
, with 〈a, b〉 non-principal, may be a product of idempotents.

In fact
(

3 1 +
√
−5

0 0

)
=

(
1 0
0 0

)(
3 1 +

√
−5

−1 +
√
−5 −2

)
∈ ID2(R).

Example 4.9. It is worth giving an example of an integral domain that satisfies (princ)
and is neither factorial nor local. The required example is Z[

√
−3 ]. It is not integrally

closed, hence it cannot satisfy (ID2), by virtue of Theorem 4.6. Since Z[
√
−3 ] is close to

be factorial (its integral closure is a Euclidean domain), it is somehow expectable that it
should satisfy (princ). However, to show this fact is far from being straightforward. We
are grateful to Umberto Zannier for sending us, in a private communication, a detailed
proof that Z[

√
−3 ] satisfies (princ). We omit his nice argument, since it is concerned

with topics extraneous to the present paper.

5. Basic idempotents

In this section we examine a natural subset B of ID2(R). From our discussion we get
an improvement of the known fact that a valuation domain satisfies property (ID2).
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A singular matrix
( a b
c 1−a

)
∈ M2(R) is called a basic idempotent if the entry a is either

0 or 1. Thus a basic idempotent has one of the following forms

(
1 t

0 0

)
;
(

0 0
t 1

)
;
(

1 0
t 0

)
;
(

0 t

0 1

)

for a suitable t ∈ R.
We denote by B the set of 2×2 matrices over R that are products of basic idempotents.
We say that

(
a b
c d

)
∈ M2(R) has proportional rows and columns if the following

conditions are both satisfied

(i) either
( a
c

)
∈ R

(
b
d

)
or

(
b
d

)
∈ R

( a
c

)
;

(ii) either ( a b ) ∈ R ( c d ) or ( c d ) ∈ R ( a b ).

Manifestly, every basic idempotent has proportional rows and columns. It is straight-
forward to verify that T ∈ M2(R) has proportional rows and columns if and only if we
may write T =

( xa xb
ya yb

)
where either a ∈ Rb or b ∈ Ra and either x ∈ Ry or y ∈ Rx. In

particular, T is a column–row matrix.

Theorem 5.1. Let R be an integral domain. A matrix T ∈ M2(R) is a product of basic
idempotents if and only if T has proportional rows and columns.

Proof. We firstly show that a matrix T =
( xa xb
ya yb

)
, where either a ∈ Rb or b ∈ Ra and

either x ∈ Ry or y ∈ Rx, lies in B. We start with the case where b = at for a suitable
t ∈ R. Then

(
xa xta

ya yta

)
=

(
xa 0
ya 0

)(
1 t

0 0

)
.

Hence it suffices to check that
( xa 0
ya 0

)
∈ B. And in fact either

(
xa 0
ya 0

)
=

(
1 0

y/x 0

)(
xa 0
0 0

)
=

(
1 0

y/x 0

)(
1 xa− 1
0 0

)(
1 0
1 0

)
,

or
(
xa 0
ya 0

)
=

(
0 x/y

0 1

)(
1 0
ya 0

)
,

according to whether y/x ∈ R or x/y ∈ R.
We now consider the case a = br, where r ∈ R. Then

(
xrb xb

)
=

(
0 xb

)(
0 0

)
,

yrb yb 0 yb r 1
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and
( 0 xb

0 yb

)
∈ B, since either

(
0 xb

0 yb

)
=

(
1 0

y/x 0

)(
0 xb

0 1

)

or
(

0 xb

0 yb

)
=

(
0 x/y

0 1

)(
0 0

yb− 1 1

)(
0 1
0 1

)
,

according to whether y/x ∈ R or x/y ∈ R.
Conversely, let us show that any matrix in B has proportional rows and columns.

It suffices to prove that the proportionality of rows and columns is preserved when we
multiply on the left by a basic idempotent. So take any T =

( xa xb
ya yb

)
, where either a ∈ Rb

or b ∈ Ra and either x ∈ Ry or y ∈ R. It is readily seen that the matrices
(

1 0
t 0

)
T =

(
xa xb

txa txb

)

and
(

1 t

0 0

)
T =

(
a(x + ty) b(x + ty)

0 0

)

have proportional rows and columns. A similar computation shows that also the matrices( 0 t
0 1

)
T and

( 0 0
t 1

)
T have proportional rows and columns. �

The preceding theorem has a relevant consequence.

Theorem 5.2. Let R be an integral domain. Every singular matrix T ∈ M2(R) is a product
of basic idempotents if and only if R is a valuation domain.

Proof. We firstly assume that R is not a valuation domain. Pick elements a, b ∈ R such
that a /∈ bR and b /∈ aR. Then Theorem 5.1 shows that the matrix

(
a b
0 0

)
doesn’t lie in B.

Conversely, let R be a valuation domain and take any singular 2×2 matrix T =
(
a b
c d

)
over R. Assume that b = at ∈ aR and c = ar ∈ aR. Then ad = bc shows that d = tra,
and so, manifestly, T =

(
a ta
ra tra

)
has proportional rows and columns. In a similar way

one treats the cases where a ∈ bR, a ∈ cR, etc., in each case concluding that T has
proportional rows and columns. Therefore T ∈ B, in view of Theorem 4.6. �
Corollary 5.3. Let R be a local domain. Then R satisfies property (ID2) if and only if R
is a valuation domain.

Proof. By Theorem 5.1, a valuation domain satisfies (ID2). Moreover, a local domain
R that satisfies (ID2) must be a Bézout domain, by Theorem 4.6 and Proposition 4.3.
Hence R is a valuation domain. �
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Since it is well-known, and easily proved, that any local domain satisfies (GE2), the
preceding corollary shows that Theorem 3.5 is no longer valid outside the class of Bézout
domains.

6. Weak Euclidean algorithm

In the paper [22], O’Meara examined the natural notion of Euclidean chain condition
for Dedekind domains. Here we extend O’Meara’s definition to arbitrary domains; note
that the Dedekind condition is irrelevant. We try to use a terminology as simple as
possible.

Let R be an integral domain, and pick two non-zero elements a, b ∈ R. We say that
a, b satisfy a weak Euclidean algorithm (or weak algorithm, for short) if there is a finite
sequence of relations

ri = qi+1ri+1 + ri+2, ri, qi ∈ R, −1 � i � n− 2,

such that b = r−1, a = r0, rn−1 �= 0 and rn = 0.
We say that R admits a weak Euclidean algorithm if this phenomenon happens for any

pair of non-zero elements a, b ∈ R. (In O’Meara’s terminology, R satisfies the Euclidean
chain condition.)

The algorithm implies that 〈a, b〉 = rn−1R, hence any domain admitting a weak
Euclidean algorithm must be a Bézout domain.

We remark two useful, readily verified facts:

(i) a, b ∈ R satisfy a weak algorithm if one of them divides the other;
(ii) if a, b ∈ R satisfy a weak algorithm, then the same is true for u1a, u2b for all units

u1, u2 ∈ R.

It is easy to show that R admits a weak Euclidean algorithm when R is a valuation
domain.

Remark 1. We remark that in the paper [8], G. Cooke generalized the notion of Eu-
clidean domain, and applied it to the rings of integers in quadratic number fields in [9].
Several papers have followed his research, see, e.g., [5]. In Cooke’s terminology (see [8]),
a domain R that satisfies a weak Euclidean algorithm is an ω-stage Euclidean domain, if
we consider the trivial norm N on R defined by N(0) = 0 and N(a) = 1 for 0 �= a ∈ R,
hence our discussion is valid for those kinds of rings.

We recall that O’Meara proved the following nice result, that we state in our termi-
nology.

Theorem 6.1. (See O’Meara [22, Theorem 14.3].) A principal ideal domain R admits a
weak Euclidean algorithm if and only if R satisfies property (GE2).
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Actually, we remark that the above theorem extends verbatim to Bézout domains R.
From Theorem 3.5 it follows that such R satisfies property (ID2), as well. We thought

it convenient to prove directly this last result.

Theorem 6.2. If an integral domain R admits a weak Euclidean algorithm, then it satisfies
property (ID2).

Proof. Since R is automatically a Bézout domain, by Proposition 2.2 any singular 2× 2
matrix T over R has the form T =

( xa xb
ya yb

)
for suitable a, b, x, y ∈ R. Then, using

Lemma 2.5, we see that R satisfies (ID2) as soon as every matrix of the form
(
a b
0 0

)
lies in ID2(R), so that, by transposition, also

( x 0
y 0

)
∈ ID2(R) for all x, y ∈ R. So we

take
(
a b
0 0

)
and prove that it lies in ID2(R). Now we apply to a, b the weak algorithm,

producing the elements r1, . . . , rn−1, rn = 0. At the first step we get b = q0a + r1. Since

(
a r1
0 0

)
=

(
1 q0
0 1

)(
a b

0 0

)(
1 −q0
0 1

)
,

we see that
(
a b
0 0

)
is similar to

( a r1
0 0

)
, and so it suffices to prove that this latter matrix

lies in ID2(R). At the second step we get a = q1r1 + r2. We get the following relation of
similarity

(
1 0
q1 1

)(
a r1
0 0

)(
1 0

−q1 1

)
=

(
r2 r1
q1r2 q1r1

)
;

moreover
(

r2 r1
q1r2 q1r1

)
=

(
1 0
q1 0

)(
r2 r1
0 0

)
.

Hence it suffices to show that
( r2 r1

0 0
)

lies in ID2(R). Repeating this procedure, after n

steps it remains to verify that
( rn rn−1

0 0
)
∈ ID2(R). Since rn = 0 we get

(
0 rn−1
0 0

)
=

(
1 0
0 0

)(
0 rn−1
0 1

)
.

We conclude that
(
a b
0 0

)
is similar to a matrix in ID2(R). �

It is easy to show that a Bézout domain with stable range one admits a weak Euclidean
algorithm. Moreover, semi-local domains have stable range one (see [14, V.8.2]). In par-
ticular, if V1, . . . , Vn are valuation domains of the same field Q, the ring R =

⋂n
i=1 Vi is

Bézout and semi-local, hence it admits a weak Euclidean algorithm.
Now we construct some special but quite large classes of infinite intersections of val-

uation domains that admit a weak Euclidean algorithm.
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Proposition 6.3. Let λ be any cardinal number, and {Gα}α<λ any family of (not neces-
sarily distinct) totally ordered Abelian groups indexed by λ. Then there exists a family
{Vα}α<λ of valuation domains of the same field Q, such that

(i) Gα is the value group of Vα;
(ii) R =

⋂
α<λ Vα admits a weak Euclidean algorithm.

Proof. For α < λ, we denote by G+
α the subset of the positive elements of the ordered

group Gα. Let K be a field, {Xg
α: α < λ, g ∈ G+

α} indeterminates, and consider the
polynomial ring D = K[Xg

α: α < λ, g ∈ G+
α ] and its field of quotients Q = K(Xg

α: α <

λ, g ∈ G+
α ). For α < λ, we consider the valuation vα on Q that extends in the natural

way the assignments

vα
(
Xg

α

)
= g, vα

(
Xh

β

)
= 0, β �= α, g ∈ G+

α , h ∈ G+
β .

Let Vα be the valuation domain of Q associated to vα; by definition, Gα is the value group
of Vα. Let us prove that R =

⋂
α<λ Vα ⊃ D admits a weak Euclidean algorithm. For every

finite subset F of λ, we consider the subfield QF = K(Xg
γ : γ ∈ F, g ∈ G+

γ ) of Q, and the
corresponding valuation domains Wγ = Vγ ∩QF (γ ∈ F ). Then the ring RF =

⋂
γ∈F Wγ

admits a weak algorithm, since it is a finite intersection of valuation domains of the same
field. Moreover RF ⊆ R for every finite subset F of λ, since Vα ∩ QF = QF for every
α /∈ F . Indeed, from the definitions it follows that vα(f) = 0 if f ∈ QF and α /∈ F . Now
we pick two arbitrary elements f, g ∈ R; then there exists a suitable finite subset F of λ
such that f, g ∈ QF , and hence f, g ∈ RF . Since RF ⊆ R, a weak algorithm satisfied by
f , g in RF is also a weak algorithm in R. The desired conclusion follows. �

The following result provides a natural method for constructing domains with a weak
Euclidean algorithm.

Proposition 6.4. Let D be an integral domain admitting a weak Euclidean algorithm,
Q its field of fractions, X an indeterminate. Then the pull-back R = D+XQ�X� admits
a weak Euclidean algorithm.

Proof. Let J = XQ�X� be the Jacobson radical of R, and pick any z ∈ R. It is well
known, and easily verified, that, if z /∈ J , than z = au, for suitable a ∈ D and u ∈ U(R),
while, if z ∈ J , then z = qXkw, for suitable q ∈ Q, k > 0, w ∈ U(R). Let us pick two
arbitrary non-zero elements z1, z2 in R, and prove that they satisfy a weak Euclidean
algorithm. We distinguish the various possibilities.

Assume that both z1, z2 are not in J . Then, thanks to fact (ii) above, we may assume
that z1, z2 ∈ D, and therefore z1, z2 satisfy a weak algorithm in D. That same algorithm
works in R, since D ⊂ R.

Assume that z1 /∈ J and z2 ∈ J , or vice versa. Then one element divides the other,
hence z1, z2 satisfy a weak algorithm, by fact (i) above.
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Assume that z1, z2 ∈ J . Again by fact (ii), it is not restrictive to suppose that

z1 = a
(
Xk/d

)
, z2 = b

(
Xm/d

)
,

for suitable a, b, d ∈ D, and positive integers k, m. If now k �= m, then one element
divides the other, and so z1, z2 satisfy a weak algorithm. It remains to examine the case
where k = m. Under these circumstances, from a weak algorithm for a, b ∈ D in D,
multiplying the relations by Xk/d ∈ R we derive a weak algorithm in R satisfied by
z1 = a(Xk/d), z2 = b(Xk/d). �
Remark 2. The classical examples of non-Euclidean PIDs, like special rings of integers in
imaginary quadratic number fields or the example constructed by Bass [2], do not satisfy
(ID2). As a matter of fact, they were exhibited for the purpose of showing that not every
PID satisfies (GE2) (cf. [7] and [2]), or, equivalently, (ID2), by Theorem 3.5. However,
somehow surprisingly, an example of a non-Euclidean PID that does satisfy (ID2) was
not found up to now.

It is worth noting that there is no hope to find such example in the natural environment
of number fields. In fact, in the imaginary quadratic case, Cohn [7] has proved that a
non-Euclidean PID does not satisfy (GE2). Moreover, Weinberger [26] has proved, under
the Generalized Riemann Hypothesis, that every ring of integers R which is a PID is
also a Euclidean domain (not necessarily with respect to the usual norm), except for the
case where R is imaginary quadratic. More recently, Harper and Murty [16] proved the
same result without assuming GRH, but with the additional hypothesis that the unit
rank of R is greater than 3.

Actually, O’Meara’s Theorem 6.1 ensures that a PID satisfying (ID2) must admit a
weak Euclidean algorithm; hence that result seems to suggest that any non-Euclidean
PID cannot satisfy (ID2).

We end this section proving that a Bézout generalized Euclidean domain is an ele-
mentary divisor ring. Recall that a (not necessarily commutative) ring R is said to be an
elementary divisor ring (EDR, for short) if the following property is satisfied (cf. [17]).

(∗) For every matrix M with entries in R there exist invertible matrices P, Q such that
PMQ = diag(d1 . . . dn) were di divides di+1, for 1 � i � n− 1.

Proposition 6.5. If the Bézout domain R is generalized Euclidean, then it is an EDR.

Proof. In view of Theorem 5.1 in [17] (and its remark), it suffices to prove that any
singular 2 × 2 matrix T satisfies property (∗). By O’Meara’s Theorem 6.1, R admits a
weak Euclidean algorithm. Then the proof of Theorem 6.2 shows that T is similar to a
matrix of the form

( 0 r
)
, where rc = 0, since the matrix is singular. Assume that r �= 0
c d
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and c = 0. The transpose of this matrix is similar to a matrix of the form
( 0 0

0 r1

)
, again

arguing as in the proof of Theorem 6.2. This last matrix satisfies (∗), since

(
0 1
1 0

)(
0 0
0 r1

)(
0 1
1 0

)
=

(
r1 0
0 0

)
.

It follows that also T satisfies (∗). The same argument works when r = 0. �
Note that the above proposition is not reversible, since any PID is an EDR, and there

exist PIDs that don’t satisfy (GE2), as shown in [7] and [2]. Moreover, not every gener-
alized Euclidean domain is an EDR, since there exist non-Bézout generalized Euclidean
domains (e.g., local non-valuation domains), while the finitely generated ideals of an
EDR are always principal.

7. Open problems

(1) Determine the domains R such that the two conditions (SCn) and (SFCn) are
equivalent.

(2) Does condition (SFCn) imply condition (IDn) for any integral domain?
(3) Show that a PID admitting a weak Euclidean algorithm is a Euclidean ring, in

the classical sense.
The last problem appears to be crucial for the theory, in view of Theorem 3.5.
(4) Show that an integral domain R satisfying property (ID2) is necessarily a Bézout

domain.
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