//This is the ideal Fourier invariants. ring rQ = 0, (q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11,q12,q13), dp; ideal Invariants = q12^2-q11*q13, q10*q12-q9*q13, q9*q12-q8*q13, q8*q12-q7*q13, q6*q12-q5*q13, q5*q12-q4*q13, q3*q12-q2*q13, q10*q11-q8*q13, q9*q11-q7*q13, q8*q11-q7*q12, q6*q11-q4*q13, q5*q11-q4*q12, q3*q11-q2*q12, q2*q11-q1*q13, q9^2-q8*q10, q8*q9-q7*q10, q6*q9-q5*q10, q5*q9-q4*q10, q3*q9-q2*q10, q8^2-q7*q9, q6*q8-q4*q10, q5*q8-q4*q9, q3*q8-q2*q9, q2*q8-q1*q10, q6*q7-q4*q9, q5*q7-q4*q8, q3*q7-q1*q10, q2*q7-q1*q9, q5^2-q4*q6, q3*q5-q2*q6, q3*q4-q2*q5, q2*q4-q1*q6, q5*q10^2-q3*q13^2, q4*q10^2-q2*q13^2, q4*q9*q10-q2*q12*q13, q4*q8*q10-q1*q13^2, q4*q7*q10-q1*q12*q13, q4*q7*q9-q1*q11*q13, q4*q7*q8-q1*q11*q12, q4*q7^2-q1*q11^2, q2^3-q1*q3^2; // This is the inverse of the Fourier transform. matrix ptoq[20][13] = 1/256,9/256,3/128,9/256,9/128,21/256,3/64,9/128,3/16,9/128,9/128,9/64,21/128, 9/256,9/256,-9/128,45/256,9/128,-63/256,9/32,9/128,-9/64,-27/128,45/128,9/64,-63/128, 9/256,9/256,-9/128,9/256,-27/128,45/256,9/64,-27/128,9/32,-27/128,9/128,-27/64,45/128, 9/128,-27/128,9/64,9/128,-9/64,9/128,9/32,-9/64,-9/16,27/64,9/64,-9/32,9/64, 3/256,27/256,9/128,-9/256,-9/128,-21/256,0,-9/128,15/64,27/128,-9/128,-9/64,-21/128, 9/128,9/128,-9/64,-27/128,9/64,9/128,0,9/64,9/32,-27/64,-27/64,9/32,9/64, 3/128,-9/128,3/64,-9/128,9/64,-9/128,0,9/64,-9/32,9/64,-9/64,9/32,-9/64, 3/256,27/256,9/128,-9/256,-9/128,-21/256,3/32,27/128,9/64,-9/128,-9/128,-9/64,-21/128, 9/256,9/256,-9/128,9/256,-27/128,45/256,9/64,9/128,-9/32,9/128,-27/128,9/64,9/128, 9/128,9/128,-9/64,-27/128,9/64,9/128,9/32,9/64,-9/16,9/64,-9/64,-9/32,27/64, 9/256,9/256,-9/128,45/256,9/128,-63/256,0,-27/128,9/64,9/128,-27/128,9/64,9/128, 9/64,-27/64,9/32,9/64,-9/32,9/64,0,-9/32,9/16,-9/32,-9/32,9/16,-9/32, 9/128,9/128,-9/64,-27/128,9/64,9/128,0,-27/64,9/32,9/64,9/64,9/32,-27/64, 9/128,-27/128,9/64,-27/128,27/64,-27/128,0,-9/64,9/32,-9/64,9/64,-9/32,9/64, 3/256,27/256,9/128,27/256,27/128,63/256,-3/64,-9/128,-3/16,-9/128,-9/128,-9/64,-21/128, 9/128,9/128,-9/64,45/128,9/64,-63/128,-9/32,9/64,0,9/64,-9/64,-9/32,27/64, 9/128,9/128,-9/64,9/128,-27/64,45/128,-9/32,9/64,0,9/64,9/64,9/32,-27/64, 9/128,-27/128,9/64,9/128,-9/64,9/128,-9/32,27/64,0,-9/64,9/64,-9/32,9/64, 3/128,27/128,9/64,-9/128,-9/64,-21/128,-3/32,-9/64,-3/8,-9/64,9/64,9/32,21/64, 9/128,9/128,-9/64,-27/128,9/64,9/128,-9/32,9/64,0,9/64,27/64,-9/32,-9/64; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19,p20),dp; //This is the Fourier transform. matrix qtop[13][20] = 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1/9,1/9,-1/3,1,1/9,-1/3,1,1/9,1/9,1/9,-1/3,1/9,-1/3,1,1/9,1/9,-1/3,1,1/9, 1,-1/3,-1/3,1/3,1,-1/3,1/3,1,-1/3,-1/3,-1/3,1/3,-1/3,1/3,1,-1/3,-1/3,1/3,1,-1/3, 1,5/9,1/9,1/9,-1/3,-1/3,-1/3,-1/3,1/9,-1/3,5/9,1/9,-1/3,-1/3,1,5/9,1/9,1/9,-1/3,-1/3, 1,1/9,-1/3,-1/9,-1/3,1/9,1/3,-1/3,-1/3,1/9,1/9,-1/9,1/9,1/3,1,1/9,-1/3,-1/9,-1/3,1/9, 1,-1/3,5/21,1/21,-1/3,1/21,-1/7,-1/3,5/21,1/21,-1/3,1/21,1/21,-1/7,1,-1/3,5/21,1/21,-1/3,1/21, 1,2/3,1/3,1/3,0,0,0,2/3,1/3,1/3,0,0,0,0,-1/3,-1/3,-1/3,-1/3,-1/3,-1/3, 1,1/9,-1/3,-1/9,-1/3,1/9,1/3,1,1/9,1/9,-1/3,-1/9,-1/3,-1/9,-1/3,1/9,1/9,1/3,-1/3,1/9, 1,-1/12,1/6,-1/6,5/12,1/12,-1/4,1/4,-1/6,-1/6,1/12,1/12,1/12,1/12,-1/3,0,0,0,-1/3,0, 1,-1/3,-1/3,1/3,1,-1/3,1/3,-1/3,1/9,1/9,1/9,-1/9,1/9,-1/9,-1/3,1/9,1/9,-1/9,-1/3,1/9, 1,5/9,1/9,1/9,-1/3,-1/3,-1/3,-1/3,-1/3,-1/9,-1/3,-1/9,1/9,1/9,-1/3,-1/9,1/9,1/9,1/3,1/3, 1,1/9,-1/3,-1/9,-1/3,1/9,1/3,-1/3,1/9,-1/9,1/9,1/9,1/9,-1/9,-1/3,-1/9,1/9,-1/9,1/3,-1/9, 1,-1/3,5/21,1/21,-1/3,1/21,-1/7,-1/3,1/21,1/7,1/21,-1/21,-1/7,1/21,-1/3,1/7,-1/7,1/21,1/3,-1/21; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(b0,b1,d0,d1,g0,g1),dp; ideal P = b0^2*d0^3*g0^5+3*b0^2*d0^3*g1^5+6*b0^2*d0^2*d1*g0^4*g1+3*b0^2*d0^2*d1*g0^3*g1^2+3*b0^2*d0^2*d1*g0^2*g1^3+6*b0^2*d0^2*d1*g0*g1^4+18*b0^2*d0^2*d1*g1^5+6*b0^2*d0*d1^2*g0^4*g1+21*b0^2*d0*d1^2*g0^3*g1^2+3*b0^2*d0*d1^2*g0^2*g1^3+42*b0^2*d0*d1^2*g0*g1^4+36*b0^2*d0*d1^2*g1^5+3*b0^2*d1^3*g0^5+12*b0^2*d1^3*g0^4*g1+12*b0^2*d1^3*g0^3*g1^2+6*b0^2*d1^3*g0^2*g1^3+24*b0^2*d1^3*g0*g1^4+51*b0^2*d1^3*g1^5+6*b0*b1*d0^3*g0^4*g1+6*b0*b1*d0^3*g0*g1^4+12*b0*b1*d0^3*g1^5+6*b0*b1*d0^2*d1*g0^5+18*b0*b1*d0^2*d1*g0^4*g1+30*b0*b1*d0^2*d1*g0^3*g1^2+6*b0*b1*d0^2*d1*g0^2*g1^3+66*b0*b1*d0^2*d1*g0*g1^4+90*b0*b1*d0^2*d1*g1^5+6*b0*b1*d0*d1^2*g0^5+54*b0*b1*d0*d1^2*g0^4*g1+102*b0*b1*d0*d1^2*g0^3*g1^2+42*b0*b1*d0*d1^2*g0^2*g1^3+174*b0*b1*d0*d1^2*g0*g1^4+270*b0*b1*d0*d1^2*g1^5+12*b0*b1*d1^3*g0^5+66*b0*b1*d1^3*g0^4*g1+84*b0*b1*d1^3*g0^3*g1^2+24*b0*b1*d1^3*g0^2*g1^3+186*b0*b1*d1^3*g0*g1^4+276*b0*b1*d1^3*g1^5+3*b1^2*d0^3*g0^5+6*b1^2*d0^3*g0^4*g1+6*b1^2*d0^3*g0*g1^4+21*b1^2*d0^3*g1^5+6*b1^2*d0^2*d1*g0^5+36*b1^2*d0^2*d1*g0^4*g1+39*b1^2*d0^2*d1*g0^3*g1^2+15*b1^2*d0^2*d1*g0^2*g1^3+84*b1^2*d0^2*d1*g0*g1^4+144*b1^2*d0^2*d1*g1^5+6*b1^2*d0*d1^2*g0^5+72*b1^2*d0*d1^2*g0^4*g1+165*b1^2*d0*d1^2*g0^3*g1^2+51*b1^2*d0*d1^2*g0^2*g1^3+300*b1^2*d0*d1^2*g0*g1^4+378*b1^2*d0*d1^2*g1^5+21*b1^2*d1^3*g0^5+102*b1^2*d1^3*g0^4*g1+120*b1^2*d1^3*g0^3*g1^2+42*b1^2*d1^3*g0^2*g1^3+258*b1^2*d1^3*g0*g1^4+429*b1^2*d1^3*g1^5, 9*b0^2*d0^3*g0^4*g1+9*b0^2*d0^3*g0*g1^4+18*b0^2*d0^3*g1^5+63*b0^2*d0^2*d1*g0^3*g1^2+63*b0^2*d0^2*d1*g0^2*g1^3+90*b0^2*d0^2*d1*g0*g1^4+108*b0^2*d0^2*d1*g1^5+63*b0^2*d0*d1^2*g0^3*g1^2+333*b0^2*d0*d1^2*g0^2*g1^3+360*b0^2*d0*d1^2*g0*g1^4+216*b0^2*d0*d1^2*g1^5+27*b0^2*d1^3*g0^4*g1+126*b0^2*d1^3*g0^3*g1^2+216*b0^2*d1^3*g0^2*g1^3+297*b0^2*d1^3*g0*g1^4+306*b0^2*d1^3*g1^5+54*b0*b1*d0^3*g0^3*g1^2+18*b0*b1*d0^3*g0^2*g1^3+72*b0*b1*d0^3*g0*g1^4+72*b0*b1*d0^3*g1^5+54*b0*b1*d0^2*d1*g0^4*g1+180*b0*b1*d0^2*d1*g0^3*g1^2+504*b0*b1*d0^2*d1*g0^2*g1^3+666*b0*b1*d0^2*d1*g0*g1^4+540*b0*b1*d0^2*d1*g1^5+54*b0*b1*d0*d1^2*g0^4*g1+612*b0*b1*d0*d1^2*g0^3*g1^2+1692*b0*b1*d0*d1^2*g0^2*g1^3+1854*b0*b1*d0*d1^2*g0*g1^4+1620*b0*b1*d0*d1^2*g1^5+108*b0*b1*d1^3*g0^4*g1+666*b0*b1*d1^3*g0^3*g1^2+1458*b0*b1*d1^3*g0^2*g1^3+1944*b0*b1*d1^3*g0*g1^4+1656*b0*b1*d1^3*g1^5+27*b1^2*d0^3*g0^4*g1+54*b1^2*d0^3*g0^3*g1^2+18*b1^2*d0^3*g0^2*g1^3+99*b1^2*d0^3*g0*g1^4+126*b1^2*d0^3*g1^5+54*b1^2*d0^2*d1*g0^4*g1+369*b1^2*d0^2*d1*g0^3*g1^2+693*b1^2*d0^2*d1*g0^2*g1^3+936*b1^2*d0^2*d1*g0*g1^4+864*b1^2*d0^2*d1*g1^5+54*b1^2*d0*d1^2*g0^4*g1+801*b1^2*d0*d1^2*g0^3*g1^2+2691*b1^2*d0*d1^2*g0^2*g1^3+2934*b1^2*d0*d1^2*g0*g1^4+2268*b1^2*d0*d1^2*g1^5+189*b1^2*d1^3*g0^4*g1+1044*b1^2*d1^3*g0^3*g1^2+2106*b1^2*d1^3*g0^2*g1^3+2835*b1^2*d1^3*g0*g1^4+2574*b1^2*d1^3*g1^5, 9*b0^2*d0^3*g0^3*g1^2+9*b0^2*d0^3*g0^2*g1^3+18*b0^2*d0^3*g1^5+9*b0^2*d0^2*d1*g0^4*g1+18*b0^2*d0^2*d1*g0^3*g1^2+126*b0^2*d0^2*d1*g0^2*g1^3+63*b0^2*d0^2*d1*g0*g1^4+108*b0^2*d0^2*d1*g1^5+9*b0^2*d0*d1^2*g0^4*g1+126*b0^2*d0*d1^2*g0^3*g1^2+180*b0^2*d0*d1^2*g0^2*g1^3+441*b0^2*d0*d1^2*g0*g1^4+216*b0^2*d0*d1^2*g1^5+18*b0^2*d1^3*g0^4*g1+99*b0^2*d1^3*g0^3*g1^2+297*b0^2*d1^3*g0^2*g1^3+252*b0^2*d1^3*g0*g1^4+306*b0^2*d1^3*g1^5+18*b0*b1*d0^3*g0^3*g1^2+90*b0*b1*d0^3*g0^2*g1^3+36*b0*b1*d0^3*g0*g1^4+72*b0*b1*d0^3*g1^5+18*b0*b1*d0^2*d1*g0^4*g1+252*b0*b1*d0^2*d1*g0^3*g1^2+468*b0*b1*d0^2*d1*g0^2*g1^3+666*b0*b1*d0^2*d1*g0*g1^4+540*b0*b1*d0^2*d1*g1^5+126*b0*b1*d0*d1^2*g0^4*g1+576*b0*b1*d0*d1^2*g0^3*g1^2+1548*b0*b1*d0*d1^2*g0^2*g1^3+1962*b0*b1*d0*d1^2*g0*g1^4+1620*b0*b1*d0*d1^2*g1^5+72*b0*b1*d1^3*g0^4*g1+666*b0*b1*d1^3*g0^3*g1^2+1566*b0*b1*d1^3*g0^2*g1^3+1872*b0*b1*d1^3*g0*g1^4+1656*b0*b1*d1^3*g1^5+45*b1^2*d0^3*g0^3*g1^2+117*b1^2*d0^3*g0^2*g1^3+36*b1^2*d0^3*g0*g1^4+126*b1^2*d0^3*g1^5+45*b1^2*d0^2*d1*g0^4*g1+306*b1^2*d0^2*d1*g0^3*g1^2+846*b1^2*d0^2*d1*g0^2*g1^3+855*b1^2*d0^2*d1*g0*g1^4+864*b1^2*d0^2*d1*g1^5+153*b1^2*d0*d1^2*g0^4*g1+954*b1^2*d0*d1^2*g0^3*g1^2+2088*b1^2*d0*d1^2*g0^2*g1^3+3285*b1^2*d0*d1^2*g0*g1^4+2268*b1^2*d0*d1^2*g1^5+126*b1^2*d1^3*g0^4*g1+963*b1^2*d1^3*g0^3*g1^2+2457*b1^2*d1^3*g0^2*g1^3+2628*b1^2*d1^3*g0*g1^4+2574*b1^2*d1^3*g1^5, 18*b0^2*d0^3*g0^3*g1^2+36*b0^2*d0^3*g0*g1^4+18*b0^2*d0^3*g1^5+36*b0^2*d0^2*d1*g0^3*g1^2+198*b0^2*d0^2*d1*g0^2*g1^3+306*b0^2*d0^2*d1*g0*g1^4+108*b0^2*d0^2*d1*g1^5+36*b0^2*d0*d1^2*g0^3*g1^2+630*b0^2*d0*d1^2*g0^2*g1^3+1062*b0^2*d0*d1^2*g0*g1^4+216*b0^2*d0*d1^2*g1^5+126*b0^2*d1^3*g0^3*g1^2+540*b0^2*d1^3*g0^2*g1^3+972*b0^2*d1^3*g0*g1^4+306*b0^2*d1^3*g1^5+180*b0*b1*d0^3*g0^2*g1^3+180*b0*b1*d0^3*g0*g1^4+72*b0*b1*d0^3*g1^5+180*b0*b1*d0^2*d1*g0^3*g1^2+1152*b0*b1*d0^2*d1*g0^2*g1^3+2016*b0*b1*d0^2*d1*g0*g1^4+540*b0*b1*d0^2*d1*g1^5+612*b0*b1*d0*d1^2*g0^3*g1^2+3312*b0*b1*d0*d1^2*g0^2*g1^3+6120*b0*b1*d0*d1^2*g0*g1^4+1620*b0*b1*d0*d1^2*g1^5+504*b0*b1*d1^3*g0^3*g1^2+3564*b0*b1*d1^3*g0^2*g1^3+5940*b0*b1*d1^3*g0*g1^4+1656*b0*b1*d1^3*g1^5+54*b1^2*d0^3*g0^3*g1^2+180*b1^2*d0^3*g0^2*g1^3+288*b1^2*d0^3*g0*g1^4+126*b1^2*d0^3*g1^5+288*b1^2*d0^2*d1*g0^3*g1^2+1746*b1^2*d0^2*d1*g0^2*g1^3+2934*b1^2*d0^2*d1*g0*g1^4+864*b1^2*d0^2*d1*g1^5+720*b1^2*d0*d1^2*g0^3*g1^2+5202*b1^2*d0*d1^2*g0^2*g1^3+9306*b1^2*d0*d1^2*g0*g1^4+2268*b1^2*d0*d1^2*g1^5+882*b1^2*d1^3*g0^3*g1^2+5184*b1^2*d1^3*g0^2*g1^3+8856*b1^2*d1^3*g0*g1^4+2574*b1^2*d1^3*g1^5, 3*b0^2*d0^3*g0^3*g1^2+3*b0^2*d0^3*g0^2*g1^3+6*b0^2*d0^3*g1^5+3*b0^2*d0^2*d1*g0^5+6*b0^2*d0^2*d1*g0^4*g1+18*b0^2*d0^2*d1*g0^3*g1^2+6*b0^2*d0^2*d1*g0^2*g1^3+30*b0^2*d0^2*d1*g0*g1^4+45*b0^2*d0^2*d1*g1^5+3*b0^2*d0*d1^2*g0^5+42*b0^2*d0*d1^2*g0^4*g1+36*b0^2*d0*d1^2*g0^3*g1^2+6*b0^2*d0*d1^2*g0^2*g1^3+102*b0^2*d0*d1^2*g0*g1^4+135*b0^2*d0*d1^2*g1^5+6*b0^2*d1^3*g0^5+24*b0^2*d1^3*g0^4*g1+51*b0^2*d1^3*g0^3*g1^2+21*b0^2*d1^3*g0^2*g1^3+84*b0^2*d1^3*g0*g1^4+138*b0^2*d1^3*g1^5+6*b0*b1*d0^3*g0^4*g1+12*b0*b1*d0^3*g0^3*g1^2+30*b0*b1*d0^3*g0*g1^4+24*b0*b1*d0^3*g1^5+6*b0*b1*d0^2*d1*g0^5+66*b0*b1*d0^2*d1*g0^4*g1+90*b0*b1*d0^2*d1*g0^3*g1^2+30*b0*b1*d0^2*d1*g0^2*g1^3+186*b0*b1*d0^2*d1*g0*g1^4+270*b0*b1*d0^2*d1*g1^5+42*b0*b1*d0*d1^2*g0^5+174*b0*b1*d0*d1^2*g0^4*g1+270*b0*b1*d0*d1^2*g0^3*g1^2+102*b0*b1*d0*d1^2*g0^2*g1^3+510*b0*b1*d0*d1^2*g0*g1^4+846*b0*b1*d0*d1^2*g1^5+24*b0*b1*d1^3*g0^5+186*b0*b1*d1^3*g0^4*g1+276*b0*b1*d1^3*g0^3*g1^2+84*b0*b1*d1^3*g0^2*g1^3+570*b0*b1*d1^3*g0*g1^4+804*b0*b1*d1^3*g1^5+6*b1^2*d0^3*g0^4*g1+21*b1^2*d0^3*g0^3*g1^2+9*b1^2*d0^3*g0^2*g1^3+30*b1^2*d0^3*g0*g1^4+42*b1^2*d0^3*g1^5+15*b1^2*d0^2*d1*g0^5+84*b1^2*d0^2*d1*g0^4*g1+144*b1^2*d0^2*d1*g0^3*g1^2+48*b1^2*d0^2*d1*g0^2*g1^3+276*b1^2*d0^2*d1*g0*g1^4+405*b1^2*d0^2*d1*g1^5+51*b1^2*d0*d1^2*g0^5+300*b1^2*d0*d1^2*g0^4*g1+378*b1^2*d0*d1^2*g0^3*g1^2+120*b1^2*d0*d1^2*g0^2*g1^3+816*b1^2*d0*d1^2*g0*g1^4+1251*b1^2*d0*d1^2*g1^5+42*b1^2*d1^3*g0^5+258*b1^2*d1^3*g0^4*g1+429*b1^2*d1^3*g0^3*g1^2+147*b1^2*d1^3*g0^2*g1^3+822*b1^2*d1^3*g0*g1^4+1218*b1^2*d1^3*g1^5, 36*b0^2*d0^3*g0^2*g1^3+18*b0^2*d0^3*g0*g1^4+18*b0^2*d0^3*g1^5+18*b0^2*d0^2*d1*g0^4*g1+54*b0^2*d0^2*d1*g0^3*g1^2+162*b0^2*d0^2*d1*g0^2*g1^3+252*b0^2*d0^2*d1*g0*g1^4+162*b0^2*d0^2*d1*g1^5+18*b0^2*d0*d1^2*g0^4*g1+270*b0^2*d0*d1^2*g0^3*g1^2+486*b0^2*d0*d1^2*g0^2*g1^3+576*b0^2*d0*d1^2*g0*g1^4+594*b0^2*d0*d1^2*g1^5+36*b0^2*d1^3*g0^4*g1+180*b0^2*d1^3*g0^3*g1^2+540*b0^2*d1^3*g0^2*g1^3+666*b0^2*d1^3*g0*g1^4+522*b0^2*d1^3*g1^5+36*b0*b1*d0^3*g0^3*g1^2+108*b0*b1*d0^3*g0^2*g1^3+216*b0*b1*d0^3*g0*g1^4+72*b0*b1*d0^3*g1^5+36*b0*b1*d0^2*d1*g0^4*g1+432*b0*b1*d0^2*d1*g0^3*g1^2+1080*b0*b1*d0^2*d1*g0^2*g1^3+1260*b0*b1*d0^2*d1*g0*g1^4+1080*b0*b1*d0^2*d1*g1^5+252*b0*b1*d0*d1^2*g0^4*g1+1296*b0*b1*d0*d1^2*g0^3*g1^2+3024*b0*b1*d0*d1^2*g0^2*g1^3+3636*b0*b1*d0*d1^2*g0*g1^4+3456*b0*b1*d0*d1^2*g1^5+144*b0*b1*d1^3*g0^4*g1+1260*b0*b1*d1^3*g0^3*g1^2+3132*b0*b1*d1^3*g0^2*g1^3+3960*b0*b1*d1^3*g0*g1^4+3168*b0*b1*d1^3*g1^5+36*b1^2*d0^3*g0^3*g1^2+216*b1^2*d0^3*g0^2*g1^3+270*b1^2*d0^3*g0*g1^4+126*b1^2*d0^3*g1^5+90*b1^2*d0^2*d1*g0^4*g1+594*b1^2*d0^2*d1*g0^3*g1^2+1566*b1^2*d0^2*d1*g0^2*g1^3+2016*b1^2*d0^2*d1*g0*g1^4+1566*b1^2*d0^2*d1*g1^5+306*b1^2*d0*d1^2*g0^4*g1+2106*b1^2*d0*d1^2*g0^3*g1^2+4482*b1^2*d0*d1^2*g0^2*g1^3+5364*b1^2*d0*d1^2*g0*g1^4+5238*b1^2*d0*d1^2*g1^5+252*b1^2*d1^3*g0^4*g1+1800*b1^2*d1^3*g0^3*g1^2+4752*b1^2*d1^3*g0^2*g1^3+5958*b1^2*d1^3*g0*g1^4+4734*b1^2*d1^3*g1^5, 6*b0^2*d0^3*g0^2*g1^3+18*b0^2*d0^3*g0*g1^4+18*b0^2*d0^2*d1*g0^3*g1^2+36*b0^2*d0^2*d1*g0^2*g1^3+144*b0^2*d0^2*d1*g0*g1^4+18*b0^2*d0^2*d1*g1^5+18*b0^2*d0*d1^2*g0^3*g1^2+252*b0^2*d0*d1^2*g0^2*g1^3+252*b0^2*d0*d1^2*g0*g1^4+126*b0^2*d0*d1^2*g1^5+36*b0^2*d1^3*g0^3*g1^2+162*b0^2*d1^3*g0^2*g1^3+378*b0^2*d1^3*g0*g1^4+72*b0^2*d1^3*g1^5+36*b0*b1*d0^3*g0^2*g1^3+108*b0*b1*d0^3*g0*g1^4+36*b0*b1*d0^2*d1*g0^3*g1^2+432*b0*b1*d0^2*d1*g0^2*g1^3+648*b0*b1*d0^2*d1*g0*g1^4+180*b0*b1*d0^2*d1*g1^5+252*b0*b1*d0*d1^2*g0^3*g1^2+1080*b0*b1*d0*d1^2*g0^2*g1^3+1944*b0*b1*d0*d1^2*g0*g1^4+612*b0*b1*d0*d1^2*g1^5+144*b0*b1*d1^3*g0^3*g1^2+1188*b0*b1*d1^3*g0^2*g1^3+2052*b0*b1*d1^3*g0*g1^4+504*b0*b1*d1^3*g1^5+54*b1^2*d0^3*g0^2*g1^3+162*b1^2*d0^3*g0*g1^4+90*b1^2*d0^2*d1*g0^3*g1^2+540*b1^2*d0^2*d1*g0^2*g1^3+1080*b1^2*d0^2*d1*g0*g1^4+234*b1^2*d0^2*d1*g1^5+306*b1^2*d0*d1^2*g0^3*g1^2+1836*b1^2*d0*d1^2*g0^2*g1^3+2700*b1^2*d0*d1^2*g0*g1^4+990*b1^2*d0*d1^2*g1^5+252*b1^2*d1^3*g0^3*g1^2+1674*b1^2*d1^3*g0^2*g1^3+3186*b1^2*d1^3*g0*g1^4+720*b1^2*d1^3*g1^5, 3*b0^2*d0^3*g0^4*g1+3*b0^2*d0^3*g0*g1^4+6*b0^2*d0^3*g1^5+3*b0^2*d0^2*d1*g0^5+9*b0^2*d0^2*d1*g0^4*g1+15*b0^2*d0^2*d1*g0^3*g1^2+3*b0^2*d0^2*d1*g0^2*g1^3+33*b0^2*d0^2*d1*g0*g1^4+45*b0^2*d0^2*d1*g1^5+3*b0^2*d0*d1^2*g0^5+27*b0^2*d0*d1^2*g0^4*g1+51*b0^2*d0*d1^2*g0^3*g1^2+21*b0^2*d0*d1^2*g0^2*g1^3+87*b0^2*d0*d1^2*g0*g1^4+135*b0^2*d0*d1^2*g1^5+6*b0^2*d1^3*g0^5+33*b0^2*d1^3*g0^4*g1+42*b0^2*d1^3*g0^3*g1^2+12*b0^2*d1^3*g0^2*g1^3+93*b0^2*d1^3*g0*g1^4+138*b0^2*d1^3*g1^5+18*b0*b1*d0^3*g0^3*g1^2+6*b0*b1*d0^3*g0^2*g1^3+24*b0*b1*d0^3*g0*g1^4+24*b0*b1*d0^3*g1^5+6*b0*b1*d0^2*d1*g0^5+60*b0*b1*d0^2*d1*g0^4*g1+96*b0*b1*d0^2*d1*g0^3*g1^2+36*b0*b1*d0^2*d1*g0^2*g1^3+180*b0*b1*d0^2*d1*g0*g1^4+270*b0*b1*d0^2*d1*g1^5+42*b0*b1*d0*d1^2*g0^5+204*b0*b1*d0*d1^2*g0^4*g1+240*b0*b1*d0*d1^2*g0^3*g1^2+72*b0*b1*d0*d1^2*g0^2*g1^3+540*b0*b1*d0*d1^2*g0*g1^4+846*b0*b1*d0*d1^2*g1^5+24*b0*b1*d1^3*g0^5+168*b0*b1*d1^3*g0^4*g1+294*b0*b1*d1^3*g0^3*g1^2+102*b0*b1*d1^3*g0^2*g1^3+552*b0*b1*d1^3*g0*g1^4+804*b0*b1*d1^3*g1^5+9*b1^2*d0^3*g0^4*g1+18*b1^2*d0^3*g0^3*g1^2+6*b1^2*d0^3*g0^2*g1^3+33*b1^2*d0^3*g0*g1^4+42*b1^2*d0^3*g1^5+15*b1^2*d0^2*d1*g0^5+87*b1^2*d0^2*d1*g0^4*g1+141*b1^2*d0^2*d1*g0^3*g1^2+45*b1^2*d0^2*d1*g0^2*g1^3+279*b1^2*d0^2*d1*g0*g1^4+405*b1^2*d0^2*d1*g1^5+51*b1^2*d0*d1^2*g0^5+285*b1^2*d0*d1^2*g0^4*g1+393*b1^2*d0*d1^2*g0^3*g1^2+135*b1^2*d0*d1^2*g0^2*g1^3+801*b1^2*d0*d1^2*g0*g1^4+1251*b1^2*d0*d1^2*g1^5+42*b1^2*d1^3*g0^5+267*b1^2*d1^3*g0^4*g1+420*b1^2*d1^3*g0^3*g1^2+138*b1^2*d1^3*g0^2*g1^3+831*b1^2*d1^3*g0*g1^4+1218*b1^2*d1^3*g1^5, 9*b0^2*d0^3*g0^3*g1^2+9*b0^2*d0^3*g0^2*g1^3+18*b0^2*d0^3*g1^5+9*b0^2*d0^2*d1*g0^4*g1+36*b0^2*d0^2*d1*g0^3*g1^2+72*b0^2*d0^2*d1*g0^2*g1^3+117*b0^2*d0^2*d1*g0*g1^4+90*b0^2*d0^2*d1*g1^5+9*b0^2*d0*d1^2*g0^4*g1+90*b0^2*d0*d1^2*g0^3*g1^2+288*b0^2*d0*d1^2*g0^2*g1^3+333*b0^2*d0*d1^2*g0*g1^4+252*b0^2*d0*d1^2*g1^5+18*b0^2*d1^3*g0^4*g1+117*b0^2*d1^3*g0^3*g1^2+243*b0^2*d1^3*g0^2*g1^3+306*b0^2*d1^3*g0*g1^4+288*b0^2*d1^3*g1^5+18*b0*b1*d0^3*g0^3*g1^2+90*b0*b1*d0^3*g0^2*g1^3+36*b0*b1*d0^3*g0*g1^4+72*b0*b1*d0^3*g1^5+18*b0*b1*d0^2*d1*g0^4*g1+216*b0*b1*d0^2*d1*g0^3*g1^2+576*b0*b1*d0^2*d1*g0^2*g1^3+558*b0*b1*d0^2*d1*g0*g1^4+576*b0*b1*d0^2*d1*g1^5+126*b0*b1*d0*d1^2*g0^4*g1+648*b0*b1*d0*d1^2*g0^3*g1^2+1332*b0*b1*d0*d1^2*g0^2*g1^3+2178*b0*b1*d0*d1^2*g0*g1^4+1548*b0*b1*d0*d1^2*g1^5+72*b0*b1*d1^3*g0^4*g1+630*b0*b1*d1^3*g0^3*g1^2+1674*b0*b1*d1^3*g0^2*g1^3+1764*b0*b1*d1^3*g0*g1^4+1692*b0*b1*d1^3*g1^5+45*b1^2*d0^3*g0^3*g1^2+117*b1^2*d0^3*g0^2*g1^3+36*b1^2*d0^3*g0*g1^4+126*b1^2*d0^3*g1^5+45*b1^2*d0^2*d1*g0^4*g1+324*b1^2*d0^2*d1*g0^3*g1^2+792*b1^2*d0^2*d1*g0^2*g1^3+909*b1^2*d0^2*d1*g0*g1^4+846*b1^2*d0^2*d1*g1^5+153*b1^2*d0*d1^2*g0^4*g1+918*b1^2*d0*d1^2*g0^3*g1^2+2196*b1^2*d0*d1^2*g0^2*g1^3+3177*b1^2*d0*d1^2*g0*g1^4+2304*b1^2*d0*d1^2*g1^5+126*b1^2*d1^3*g0^4*g1+981*b1^2*d1^3*g0^3*g1^2+2403*b1^2*d1^3*g0^2*g1^3+2682*b1^2*d1^3*g0*g1^4+2556*b1^2*d1^3*g1^5, 18*b0^2*d0^3*g0^3*g1^2+36*b0^2*d0^3*g0*g1^4+18*b0^2*d0^3*g1^5+18*b0^2*d0^2*d1*g0^4*g1+54*b0^2*d0^2*d1*g0^3*g1^2+180*b0^2*d0^2*d1*g0^2*g1^3+216*b0^2*d0^2*d1*g0*g1^4+180*b0^2*d0^2*d1*g1^5+18*b0^2*d0*d1^2*g0^4*g1+216*b0^2*d0*d1^2*g0^3*g1^2+558*b0^2*d0*d1^2*g0^2*g1^3+594*b0^2*d0*d1^2*g0*g1^4+558*b0^2*d0*d1^2*g1^5+36*b0^2*d1^3*g0^4*g1+216*b0^2*d1^3*g0^3*g1^2+486*b0^2*d1^3*g0^2*g1^3+666*b0^2*d1^3*g0*g1^4+540*b0^2*d1^3*g1^5+180*b0*b1*d0^3*g0^2*g1^3+180*b0*b1*d0^3*g0*g1^4+72*b0*b1*d0^3*g1^5+36*b0*b1*d0^2*d1*g0^4*g1+432*b0*b1*d0^2*d1*g0^3*g1^2+1044*b0*b1*d0^2*d1*g0^2*g1^3+1332*b0*b1*d0^2*d1*g0*g1^4+1044*b0*b1*d0^2*d1*g1^5+252*b0*b1*d0*d1^2*g0^4*g1+1404*b0*b1*d0*d1^2*g0^3*g1^2+2880*b0*b1*d0*d1^2*g0^2*g1^3+3600*b0*b1*d0*d1^2*g0*g1^4+3528*b0*b1*d0*d1^2*g1^5+144*b0*b1*d1^3*g0^4*g1+1188*b0*b1*d1^3*g0^3*g1^2+3240*b0*b1*d1^3*g0^2*g1^3+3960*b0*b1*d1^3*g0*g1^4+3132*b0*b1*d1^3*g1^5+54*b1^2*d0^3*g0^3*g1^2+180*b1^2*d0^3*g0^2*g1^3+288*b1^2*d0^3*g0*g1^4+126*b1^2*d0^3*g1^5+90*b1^2*d0^2*d1*g0^4*g1+594*b1^2*d0^2*d1*g0^3*g1^2+1584*b1^2*d0^2*d1*g0^2*g1^3+1980*b1^2*d0^2*d1*g0*g1^4+1584*b1^2*d0^2*d1*g1^5+306*b1^2*d0*d1^2*g0^4*g1+2052*b1^2*d0*d1^2*g0^3*g1^2+4554*b1^2*d0*d1^2*g0^2*g1^3+5382*b1^2*d0*d1^2*g0*g1^4+5202*b1^2*d0*d1^2*g1^5+252*b1^2*d1^3*g0^4*g1+1836*b1^2*d1^3*g0^3*g1^2+4698*b1^2*d1^3*g0^2*g1^3+5958*b1^2*d1^3*g0*g1^4+4752*b1^2*d1^3*g1^5, 9*b0^2*d0^3*g0^3*g1^2+9*b0^2*d0^3*g0^2*g1^3+18*b0^2*d0^3*g1^5+9*b0^2*d0^2*d1*g0^4*g1+36*b0^2*d0^2*d1*g0^3*g1^2+72*b0^2*d0^2*d1*g0^2*g1^3+117*b0^2*d0^2*d1*g0*g1^4+90*b0^2*d0^2*d1*g1^5+9*b0^2*d0*d1^2*g0^4*g1+90*b0^2*d0*d1^2*g0^3*g1^2+288*b0^2*d0*d1^2*g0^2*g1^3+333*b0^2*d0*d1^2*g0*g1^4+252*b0^2*d0*d1^2*g1^5+18*b0^2*d1^3*g0^4*g1+117*b0^2*d1^3*g0^3*g1^2+243*b0^2*d1^3*g0^2*g1^3+306*b0^2*d1^3*g0*g1^4+288*b0^2*d1^3*g1^5+18*b0*b1*d0^3*g0^4*g1+36*b0*b1*d0^3*g0^3*g1^2+90*b0*b1*d0^3*g0*g1^4+72*b0*b1*d0^3*g1^5+36*b0*b1*d0^2*d1*g0^4*g1+234*b0*b1*d0^2*d1*g0^3*g1^2+486*b0*b1*d0^2*d1*g0^2*g1^3+612*b0*b1*d0^2*d1*g0*g1^4+576*b0*b1*d0^2*d1*g1^5+36*b0*b1*d0*d1^2*g0^4*g1+558*b0*b1*d0*d1^2*g0^3*g1^2+1782*b0*b1*d0*d1^2*g0^2*g1^3+1908*b0*b1*d0*d1^2*g0*g1^4+1548*b0*b1*d0*d1^2*g1^5+126*b0*b1*d1^3*g0^4*g1+684*b0*b1*d1^3*g0^3*g1^2+1404*b0*b1*d1^3*g0^2*g1^3+1926*b0*b1*d1^3*g0*g1^4+1692*b0*b1*d1^3*g1^5+18*b1^2*d0^3*g0^4*g1+63*b1^2*d0^3*g0^3*g1^2+27*b1^2*d0^3*g0^2*g1^3+90*b1^2*d0^3*g0*g1^4+126*b1^2*d0^3*g1^5+63*b1^2*d0^2*d1*g0^4*g1+342*b1^2*d0^2*d1*g0^3*g1^2+702*b1^2*d0^2*d1*g0^2*g1^3+963*b1^2*d0^2*d1*g0*g1^4+846*b1^2*d0^2*d1*g1^5+63*b1^2*d0*d1^2*g0^4*g1+828*b1^2*d0*d1^2*g0^3*g1^2+2646*b1^2*d0*d1^2*g0^2*g1^3+2907*b1^2*d0*d1^2*g0*g1^4+2304*b1^2*d0*d1^2*g1^5+180*b1^2*d1^3*g0^4*g1+1035*b1^2*d1^3*g0^3*g1^2+2133*b1^2*d1^3*g0^2*g1^3+2844*b1^2*d1^3*g0*g1^4+2556*b1^2*d1^3*g1^5, 72*b0^2*d0^3*g0^2*g1^3+36*b0^2*d0^3*g0*g1^4+36*b0^2*d0^3*g1^5+72*b0^2*d0^2*d1*g0^3*g1^2+360*b0^2*d0^2*d1*g0^2*g1^3+684*b0^2*d0^2*d1*g0*g1^4+180*b0^2*d0^2*d1*g1^5+180*b0^2*d0*d1^2*g0^3*g1^2+1116*b0^2*d0*d1^2*g0^2*g1^3+2088*b0^2*d0*d1^2*g0*g1^4+504*b0^2*d0*d1^2*g1^5+180*b0^2*d1^3*g0^3*g1^2+1188*b0^2*d1^3*g0^2*g1^3+1944*b0^2*d1^3*g0*g1^4+576*b0^2*d1^3*g1^5+72*b0*b1*d0^3*g0^3*g1^2+216*b0*b1*d0^3*g0^2*g1^3+432*b0*b1*d0^3*g0*g1^4+144*b0*b1*d0^3*g1^5+360*b0*b1*d0^2*d1*g0^3*g1^2+2376*b0*b1*d0^2*d1*g0^2*g1^3+3888*b0*b1*d0^2*d1*g0*g1^4+1152*b0*b1*d0^2*d1*g1^5+1008*b0*b1*d0*d1^2*g0^3*g1^2+6912*b0*b1*d0*d1^2*g0^2*g1^3+12312*b0*b1*d0*d1^2*g0*g1^4+3096*b0*b1*d0*d1^2*g1^5+1152*b0*b1*d1^3*g0^3*g1^2+6912*b0*b1*d1^3*g0^2*g1^3+11880*b0*b1*d1^3*g0*g1^4+3384*b0*b1*d1^3*g1^5+72*b1^2*d0^3*g0^3*g1^2+432*b1^2*d0^3*g0^2*g1^3+540*b1^2*d0^3*g0*g1^4+252*b1^2*d0^3*g1^5+576*b1^2*d0^2*d1*g0^3*g1^2+3456*b1^2*d0^2*d1*g0^2*g1^3+5940*b1^2*d0^2*d1*g0*g1^4+1692*b1^2*d0^2*d1*g1^5+1548*b1^2*d0*d1^2*g0^3*g1^2+10260*b1^2*d0*d1^2*g0^2*g1^3+18576*b1^2*d0*d1^2*g0*g1^4+4608*b1^2*d0*d1^2*g1^5+1692*b1^2*d1^3*g0^3*g1^2+10476*b1^2*d1^3*g0^2*g1^3+17712*b1^2*d1^3*g0*g1^4+5112*b1^2*d1^3*g1^5, 36*b0^2*d0^3*g0^2*g1^3+18*b0^2*d0^3*g0*g1^4+18*b0^2*d0^3*g1^5+90*b0^2*d0^2*d1*g0^3*g1^2+162*b0^2*d0^2*d1*g0^2*g1^3+216*b0^2*d0^2*d1*g0*g1^4+180*b0^2*d0^2*d1*g1^5+54*b0^2*d0*d1^2*g0^4*g1+198*b0^2*d0*d1^2*g0^3*g1^2+486*b0^2*d0*d1^2*g0^2*g1^3+648*b0^2*d0*d1^2*g0*g1^4+558*b0^2*d0*d1^2*g1^5+18*b0^2*d1^3*g0^4*g1+216*b0^2*d1^3*g0^3*g1^2+540*b0^2*d1^3*g0^2*g1^3+630*b0^2*d1^3*g0*g1^4+540*b0^2*d1^3*g1^5+36*b0*b1*d0^3*g0^3*g1^2+108*b0*b1*d0^3*g0^2*g1^3+216*b0*b1*d0^3*g0*g1^4+72*b0*b1*d0^3*g1^5+72*b0*b1*d0^2*d1*g0^4*g1+360*b0*b1*d0^2*d1*g0^3*g1^2+1080*b0*b1*d0^2*d1*g0^2*g1^3+1332*b0*b1*d0^2*d1*g0*g1^4+1044*b0*b1*d0^2*d1*g1^5+180*b0*b1*d0*d1^2*g0^4*g1+1440*b0*b1*d0*d1^2*g0^3*g1^2+3024*b0*b1*d0*d1^2*g0^2*g1^3+3492*b0*b1*d0*d1^2*g0*g1^4+3528*b0*b1*d0*d1^2*g1^5+180*b0*b1*d1^3*g0^4*g1+1188*b0*b1*d1^3*g0^3*g1^2+3132*b0*b1*d1^3*g0^2*g1^3+4032*b0*b1*d1^3*g0*g1^4+3132*b0*b1*d1^3*g1^5+36*b1^2*d0^3*g0^3*g1^2+216*b1^2*d0^3*g0^2*g1^3+270*b1^2*d0^3*g0*g1^4+126*b1^2*d0^3*g1^5+72*b1^2*d0^2*d1*g0^4*g1+630*b1^2*d0^2*d1*g0^3*g1^2+1566*b1^2*d0^2*d1*g0^2*g1^3+1980*b1^2*d0^2*d1*g0*g1^4+1584*b1^2*d0^2*d1*g1^5+342*b1^2*d0*d1^2*g0^4*g1+2034*b1^2*d0*d1^2*g0^3*g1^2+4482*b1^2*d0*d1^2*g0^2*g1^3+5436*b1^2*d0*d1^2*g0*g1^4+5202*b1^2*d0*d1^2*g1^5+234*b1^2*d1^3*g0^4*g1+1836*b1^2*d1^3*g0^3*g1^2+4752*b1^2*d1^3*g0^2*g1^3+5922*b1^2*d1^3*g0*g1^4+4752*b1^2*d1^3*g1^5, 18*b0^2*d0^3*g0^2*g1^3+54*b0^2*d0^3*g0*g1^4+18*b0^2*d0^2*d1*g0^3*g1^2+216*b0^2*d0^2*d1*g0^2*g1^3+324*b0^2*d0^2*d1*g0*g1^4+90*b0^2*d0^2*d1*g1^5+126*b0^2*d0*d1^2*g0^3*g1^2+540*b0^2*d0*d1^2*g0^2*g1^3+972*b0^2*d0*d1^2*g0*g1^4+306*b0^2*d0*d1^2*g1^5+72*b0^2*d1^3*g0^3*g1^2+594*b0^2*d1^3*g0^2*g1^3+1026*b0^2*d1^3*g0*g1^4+252*b0^2*d1^3*g1^5+108*b0*b1*d0^3*g0^2*g1^3+324*b0*b1*d0^3*g0*g1^4+180*b0*b1*d0^2*d1*g0^3*g1^2+1080*b0*b1*d0^2*d1*g0^2*g1^3+2160*b0*b1*d0^2*d1*g0*g1^4+468*b0*b1*d0^2*d1*g1^5+612*b0*b1*d0*d1^2*g0^3*g1^2+3672*b0*b1*d0*d1^2*g0^2*g1^3+5400*b0*b1*d0*d1^2*g0*g1^4+1980*b0*b1*d0*d1^2*g1^5+504*b0*b1*d1^3*g0^3*g1^2+3348*b0*b1*d1^3*g0^2*g1^3+6372*b0*b1*d1^3*g0*g1^4+1440*b0*b1*d1^3*g1^5+162*b1^2*d0^3*g0^2*g1^3+486*b1^2*d0^3*g0*g1^4+234*b1^2*d0^2*d1*g0^3*g1^2+1728*b1^2*d0^2*d1*g0^2*g1^3+3132*b1^2*d0^2*d1*g0*g1^4+738*b1^2*d0^2*d1*g1^5+990*b1^2*d0*d1^2*g0^3*g1^2+5292*b1^2*d0*d1^2*g0^2*g1^3+8316*b1^2*d0*d1^2*g0*g1^4+2898*b1^2*d0*d1^2*g1^5+720*b1^2*d1^3*g0^3*g1^2+5130*b1^2*d1^3*g0^2*g1^3+9450*b1^2*d1^3*g0*g1^4+2196*b1^2*d1^3*g1^5, 3*b0^2*d0^3*g0^4*g1+3*b0^2*d0^3*g0*g1^4+6*b0^2*d0^3*g1^5+3*b0^2*d0^2*d1*g0^5+9*b0^2*d0^2*d1*g0^4*g1+15*b0^2*d0^2*d1*g0^3*g1^2+3*b0^2*d0^2*d1*g0^2*g1^3+33*b0^2*d0^2*d1*g0*g1^4+45*b0^2*d0^2*d1*g1^5+3*b0^2*d0*d1^2*g0^5+27*b0^2*d0*d1^2*g0^4*g1+51*b0^2*d0*d1^2*g0^3*g1^2+21*b0^2*d0*d1^2*g0^2*g1^3+87*b0^2*d0*d1^2*g0*g1^4+135*b0^2*d0*d1^2*g1^5+6*b0^2*d1^3*g0^5+33*b0^2*d1^3*g0^4*g1+42*b0^2*d1^3*g0^3*g1^2+12*b0^2*d1^3*g0^2*g1^3+93*b0^2*d1^3*g0*g1^4+138*b0^2*d1^3*g1^5+6*b0*b1*d0^3*g0^5+12*b0*b1*d0^3*g0^4*g1+12*b0*b1*d0^3*g0*g1^4+42*b0*b1*d0^3*g1^5+12*b0*b1*d0^2*d1*g0^5+72*b0*b1*d0^2*d1*g0^4*g1+78*b0*b1*d0^2*d1*g0^3*g1^2+30*b0*b1*d0^2*d1*g0^2*g1^3+168*b0*b1*d0^2*d1*g0*g1^4+288*b0*b1*d0^2*d1*g1^5+12*b0*b1*d0*d1^2*g0^5+144*b0*b1*d0*d1^2*g0^4*g1+330*b0*b1*d0*d1^2*g0^3*g1^2+102*b0*b1*d0*d1^2*g0^2*g1^3+600*b0*b1*d0*d1^2*g0*g1^4+756*b0*b1*d0*d1^2*g1^5+42*b0*b1*d1^3*g0^5+204*b0*b1*d1^3*g0^4*g1+240*b0*b1*d1^3*g0^3*g1^2+84*b0*b1*d1^3*g0^2*g1^3+516*b0*b1*d1^3*g0*g1^4+858*b0*b1*d1^3*g1^5+6*b1^2*d0^3*g0^5+21*b1^2*d0^3*g0^4*g1+21*b1^2*d0^3*g0*g1^4+60*b1^2*d0^3*g1^5+21*b1^2*d0^2*d1*g0^5+99*b1^2*d0^2*d1*g0^4*g1+123*b1^2*d0^2*d1*g0^3*g1^2+39*b1^2*d0^2*d1*g0^2*g1^3+267*b1^2*d0^2*d1*g0*g1^4+423*b1^2*d0^2*d1*g1^5+21*b1^2*d0*d1^2*g0^5+225*b1^2*d0*d1^2*g0^4*g1+483*b1^2*d0*d1^2*g0^3*g1^2+165*b1^2*d0*d1^2*g0^2*g1^3+861*b1^2*d0*d1^2*g0*g1^4+1161*b1^2*d0*d1^2*g1^5+60*b1^2*d1^3*g0^5+303*b1^2*d1^3*g0^4*g1+366*b1^2*d1^3*g0^3*g1^2+120*b1^2*d1^3*g0^2*g1^3+795*b1^2*d1^3*g0*g1^4+1272*b1^2*d1^3*g1^5, 18*b0^2*d0^3*g0^3*g1^2+36*b0^2*d0^3*g0*g1^4+18*b0^2*d0^3*g1^5+18*b0^2*d0^2*d1*g0^4*g1+54*b0^2*d0^2*d1*g0^3*g1^2+180*b0^2*d0^2*d1*g0^2*g1^3+216*b0^2*d0^2*d1*g0*g1^4+180*b0^2*d0^2*d1*g1^5+18*b0^2*d0*d1^2*g0^4*g1+216*b0^2*d0*d1^2*g0^3*g1^2+558*b0^2*d0*d1^2*g0^2*g1^3+594*b0^2*d0*d1^2*g0*g1^4+558*b0^2*d0*d1^2*g1^5+36*b0^2*d1^3*g0^4*g1+216*b0^2*d1^3*g0^3*g1^2+486*b0^2*d1^3*g0^2*g1^3+666*b0^2*d1^3*g0*g1^4+540*b0^2*d1^3*g1^5+36*b0*b1*d0^3*g0^4*g1+72*b0*b1*d0^3*g0^3*g1^2+36*b0*b1*d0^3*g0^2*g1^3+108*b0*b1*d0^3*g0*g1^4+180*b0*b1*d0^3*g1^5+72*b0*b1*d0^2*d1*g0^4*g1+504*b0*b1*d0^2*d1*g0^3*g1^2+900*b0*b1*d0^2*d1*g0^2*g1^3+1260*b0*b1*d0^2*d1*g0*g1^4+1152*b0*b1*d0^2*d1*g1^5+72*b0*b1*d0*d1^2*g0^4*g1+1044*b0*b1*d0*d1^2*g0^3*g1^2+3600*b0*b1*d0*d1^2*g0^2*g1^3+3960*b0*b1*d0*d1^2*g0*g1^4+2988*b0*b1*d0*d1^2*g1^5+252*b0*b1*d1^3*g0^4*g1+1404*b0*b1*d1^3*g0^3*g1^2+2808*b0*b1*d1^3*g0^2*g1^3+3744*b0*b1*d1^3*g0*g1^4+3456*b0*b1*d1^3*g1^5+36*b1^2*d0^3*g0^4*g1+126*b1^2*d0^3*g0^3*g1^2+36*b1^2*d0^3*g0^2*g1^3+216*b1^2*d0^3*g0*g1^4+234*b1^2*d0^3*g1^5+126*b1^2*d0^2*d1*g0^4*g1+666*b1^2*d0^2*d1*g0^3*g1^2+1440*b1^2*d0^2*d1*g0^2*g1^3+1908*b1^2*d0^2*d1*g0*g1^4+1692*b1^2*d0^2*d1*g1^5+126*b1^2*d0*d1^2*g0^4*g1+1692*b1^2*d0*d1^2*g0^3*g1^2+5274*b1^2*d0*d1^2*g0^2*g1^3+5742*b1^2*d0*d1^2*g0*g1^4+4662*b1^2*d0*d1^2*g1^5+360*b1^2*d1^3*g0^4*g1+2052*b1^2*d1^3*g0^3*g1^2+4266*b1^2*d1^3*g0^2*g1^3+5742*b1^2*d1^3*g0*g1^4+5076*b1^2*d1^3*g1^5, 36*b0^2*d0^3*g0^2*g1^3+18*b0^2*d0^3*g0*g1^4+18*b0^2*d0^3*g1^5+90*b0^2*d0^2*d1*g0^3*g1^2+162*b0^2*d0^2*d1*g0^2*g1^3+216*b0^2*d0^2*d1*g0*g1^4+180*b0^2*d0^2*d1*g1^5+54*b0^2*d0*d1^2*g0^4*g1+198*b0^2*d0*d1^2*g0^3*g1^2+486*b0^2*d0*d1^2*g0^2*g1^3+648*b0^2*d0*d1^2*g0*g1^4+558*b0^2*d0*d1^2*g1^5+18*b0^2*d1^3*g0^4*g1+216*b0^2*d1^3*g0^3*g1^2+540*b0^2*d1^3*g0^2*g1^3+630*b0^2*d1^3*g0*g1^4+540*b0^2*d1^3*g1^5+72*b0*b1*d0^3*g0^3*g1^2+144*b0*b1*d0^3*g0^2*g1^3+36*b0*b1*d0^3*g0*g1^4+180*b0*b1*d0^3*g1^5+72*b0*b1*d0^2*d1*g0^4*g1+396*b0*b1*d0^2*d1*g0^3*g1^2+1116*b0*b1*d0^2*d1*g0^2*g1^3+1152*b0*b1*d0^2*d1*g0*g1^4+1152*b0*b1*d0^2*d1*g1^5+180*b0*b1*d0*d1^2*g0^4*g1+1260*b0*b1*d0*d1^2*g0^3*g1^2+2844*b0*b1*d0*d1^2*g0^2*g1^3+4392*b0*b1*d0*d1^2*g0*g1^4+2988*b0*b1*d0*d1^2*g1^5+180*b0*b1*d1^3*g0^4*g1+1296*b0*b1*d1^3*g0^3*g1^2+3240*b0*b1*d1^3*g0^2*g1^3+3492*b0*b1*d1^3*g0*g1^4+3456*b0*b1*d1^3*g1^5+72*b1^2*d0^3*g0^3*g1^2+252*b1^2*d0^3*g0^2*g1^3+90*b1^2*d0^3*g0*g1^4+234*b1^2*d0^3*g1^5+72*b1^2*d0^2*d1*g0^4*g1+666*b1^2*d0^2*d1*g0^3*g1^2+1602*b1^2*d0^2*d1*g0^2*g1^3+1800*b1^2*d0^2*d1*g0*g1^4+1692*b1^2*d0^2*d1*g1^5+342*b1^2*d0*d1^2*g0^4*g1+1854*b1^2*d0*d1^2*g0^3*g1^2+4302*b1^2*d0*d1^2*g0^2*g1^3+6336*b1^2*d0*d1^2*g0*g1^4+4662*b1^2*d0*d1^2*g1^5+234*b1^2*d1^3*g0^4*g1+1944*b1^2*d1^3*g0^3*g1^2+4860*b1^2*d1^3*g0^2*g1^3+5382*b1^2*d1^3*g0*g1^4+5076*b1^2*d1^3*g1^5, 18*b0^2*d0^3*g0^2*g1^3+54*b0^2*d0^3*g0*g1^4+18*b0^2*d0^2*d1*g0^3*g1^2+216*b0^2*d0^2*d1*g0^2*g1^3+324*b0^2*d0^2*d1*g0*g1^4+90*b0^2*d0^2*d1*g1^5+126*b0^2*d0*d1^2*g0^3*g1^2+540*b0^2*d0*d1^2*g0^2*g1^3+972*b0^2*d0*d1^2*g0*g1^4+306*b0^2*d0*d1^2*g1^5+72*b0^2*d1^3*g0^3*g1^2+594*b0^2*d1^3*g0^2*g1^3+1026*b0^2*d1^3*g0*g1^4+252*b0^2*d1^3*g1^5+36*b0*b1*d0^3*g0^3*g1^2+144*b0*b1*d0^3*g0^2*g1^3+144*b0*b1*d0^3*g0*g1^4+108*b0*b1*d0^3*g1^5+216*b0*b1*d0^2*d1*g0^3*g1^2+1116*b0*b1*d0^2*d1*g0^2*g1^3+1980*b0*b1*d0^2*d1*g0*g1^4+576*b0*b1*d0^2*d1*g1^5+432*b0*b1*d0*d1^2*g0^3*g1^2+3492*b0*b1*d0*d1^2*g0^2*g1^3+6300*b0*b1*d0*d1^2*g0*g1^4+1440*b0*b1*d0*d1^2*g1^5+612*b0*b1*d1^3*g0^3*g1^2+3456*b0*b1*d1^3*g0^2*g1^3+5832*b0*b1*d1^3*g0*g1^4+1764*b0*b1*d1^3*g1^5+36*b1^2*d0^3*g0^3*g1^2+198*b1^2*d0^3*g0^2*g1^3+306*b1^2*d0^3*g0*g1^4+108*b1^2*d0^3*g1^5+270*b1^2*d0^2*d1*g0^3*g1^2+1764*b1^2*d0^2*d1*g0^2*g1^3+2952*b1^2*d0^2*d1*g0*g1^4+846*b1^2*d0^2*d1*g1^5+810*b1^2*d0*d1^2*g0^3*g1^2+5112*b1^2*d0*d1^2*g0^2*g1^3+9216*b1^2*d0*d1^2*g0*g1^4+2358*b1^2*d0*d1^2*g1^5+828*b1^2*d1^3*g0^3*g1^2+5238*b1^2*d1^3*g0^2*g1^3+8910*b1^2*d1^3*g0*g1^4+2520*b1^2*d1^3*g1^5, 6*b0^2*d0^3*g0^3*g1^2+12*b0^2*d0^3*g0*g1^4+6*b0^2*d0^3*g1^5+24*b0^2*d0^2*d1*g0^4*g1+30*b0^2*d0^2*d1*g0^3*g1^2+12*b0^2*d0^2*d1*g0^2*g1^3+60*b0^2*d0^2*d1*g0*g1^4+90*b0^2*d0^2*d1*g1^5+18*b0^2*d0*d1^2*g0^5+60*b0^2*d0*d1^2*g0^4*g1+84*b0^2*d0*d1^2*g0^3*g1^2+30*b0^2*d0*d1^2*g0^2*g1^3+168*b0^2*d0*d1^2*g0*g1^4+288*b0^2*d0*d1^2*g1^5+6*b0^2*d1^3*g0^5+60*b0^2*d1^3*g0^4*g1+96*b0^2*d1^3*g0^3*g1^2+30*b0^2*d1^3*g0^2*g1^3+192*b0^2*d1^3*g0*g1^4+264*b0^2*d1^3*g1^5+12*b0*b1*d0^3*g0^4*g1+24*b0*b1*d0^3*g0^3*g1^2+12*b0*b1*d0^3*g0^2*g1^3+36*b0*b1*d0^3*g0*g1^4+60*b0*b1*d0^3*g1^5+24*b0*b1*d0^2*d1*g0^5+108*b0*b1*d0^2*d1*g0^4*g1+192*b0*b1*d0^2*d1*g0^3*g1^2+60*b0*b1*d0^2*d1*g0^2*g1^3+372*b0*b1*d0^2*d1*g0*g1^4+540*b0*b1*d0^2*d1*g1^5+60*b0*b1*d0*d1^2*g0^5+396*b0*b1*d0*d1^2*g0^4*g1+516*b0*b1*d0*d1^2*g0^3*g1^2+168*b0*b1*d0*d1^2*g0^2*g1^3+1092*b0*b1*d0*d1^2*g0*g1^4+1656*b0*b1*d0*d1^2*g1^5+60*b0*b1*d1^3*g0^5+348*b0*b1*d1^3*g0^4*g1+564*b0*b1*d1^3*g0^3*g1^2+192*b0*b1*d1^3*g0^2*g1^3+1092*b0*b1*d1^3*g0*g1^4+1632*b0*b1*d1^3*g1^5+12*b1^2*d0^3*g0^4*g1+42*b1^2*d0^3*g0^3*g1^2+12*b1^2*d0^3*g0^2*g1^3+72*b1^2*d0^3*g0*g1^4+78*b1^2*d0^3*g1^5+24*b1^2*d0^2*d1*g0^5+180*b1^2*d0^2*d1*g0^4*g1+282*b1^2*d0^2*d1*g0^3*g1^2+96*b1^2*d0^2*d1*g0^2*g1^3+552*b1^2*d0^2*d1*g0*g1^4+810*b1^2*d0^2*d1*g1^5+114*b1^2*d0*d1^2*g0^5+576*b1^2*d0*d1^2*g0^4*g1+768*b1^2*d0*d1^2*g0^3*g1^2+258*b1^2*d0*d1^2*g0^2*g1^3+1596*b1^2*d0*d1^2*g0*g1^4+2520*b1^2*d0*d1^2*g1^5+78*b1^2*d1^3*g0^5+528*b1^2*d1^3*g0^4*g1+852*b1^2*d1^3*g0^3*g1^2+282*b1^2*d1^3*g0^2*g1^3+1668*b1^2*d1^3*g0*g1^4+2424*b1^2*d1^3*g1^5, 18*b0^2*d0^3*g0^2*g1^3+54*b0^2*d0^3*g0*g1^4+72*b0^2*d0^2*d1*g0^3*g1^2+198*b0^2*d0^2*d1*g0^2*g1^3+198*b0^2*d0^2*d1*g0*g1^4+180*b0^2*d0^2*d1*g1^5+54*b0^2*d0*d1^2*g0^4*g1+234*b0^2*d0*d1^2*g0^3*g1^2+468*b0^2*d0*d1^2*g0^2*g1^3+576*b0^2*d0*d1^2*g0*g1^4+612*b0^2*d0*d1^2*g1^5+18*b0^2*d1^3*g0^4*g1+198*b0^2*d1^3*g0^3*g1^2+540*b0^2*d1^3*g0^2*g1^3+684*b0^2*d1^3*g0*g1^4+504*b0^2*d1^3*g1^5+36*b0*b1*d0^3*g0^3*g1^2+144*b0*b1*d0^3*g0^2*g1^3+144*b0*b1*d0^3*g0*g1^4+108*b0*b1*d0^3*g1^5+72*b0*b1*d0^2*d1*g0^4*g1+396*b0*b1*d0^2*d1*g0^3*g1^2+1008*b0*b1*d0^2*d1*g0^2*g1^3+1368*b0*b1*d0^2*d1*g0*g1^4+1044*b0*b1*d0^2*d1*g1^5+180*b0*b1*d0*d1^2*g0^4*g1+1368*b0*b1*d0*d1^2*g0^3*g1^2+3060*b0*b1*d0*d1^2*g0^2*g1^3+3636*b0*b1*d0*d1^2*g0*g1^4+3420*b0*b1*d0*d1^2*g1^5+180*b0*b1*d1^3*g0^4*g1+1224*b0*b1*d1^3*g0^3*g1^2+3132*b0*b1*d1^3*g0^2*g1^3+3924*b0*b1*d1^3*g0*g1^4+3204*b0*b1*d1^3*g1^5+36*b1^2*d0^3*g0^3*g1^2+198*b1^2*d0^3*g0^2*g1^3+306*b1^2*d0^3*g0*g1^4+108*b1^2*d0^3*g1^5+72*b1^2*d0^2*d1*g0^4*g1+612*b1^2*d0^2*d1*g0^3*g1^2+1602*b1^2*d0^2*d1*g0^2*g1^3+1962*b1^2*d0^2*d1*g0*g1^4+1584*b1^2*d0^2*d1*g1^5+342*b1^2*d0*d1^2*g0^4*g1+2070*b1^2*d0*d1^2*g0^3*g1^2+4464*b1^2*d0*d1^2*g0^2*g1^3+5364*b1^2*d0*d1^2*g0*g1^4+5256*b1^2*d0*d1^2*g1^5+234*b1^2*d1^3*g0^4*g1+1818*b1^2*d1^3*g0^3*g1^2+4752*b1^2*d1^3*g0^2*g1^3+5976*b1^2*d1^3*g0*g1^4+4716*b1^2*d1^3*g1^5; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(1,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }