//This is the ideal Fourier invariants. ring rQ = 0, (q1,q2,q3,q4,q5,q6), dp;; ideal Invariants = q3*q5-q2*q6, q3*q4-q1*q6, q2*q4-q1*q5; // This is the inverse of the Fourier transform. matrix ptoq[8][6] = 1/16,1/16,1/8,7/16,3/16,1/8, 1/8,-1/8,0,3/8,-3/8,0, 1/16,1/16,-1/8,-1/16,3/16,-1/8, 1/16,1/16,-1/8,3/16,-1/16,-1/8, 3/8,-3/8,0,-3/8,3/8,0, 1/16,1/16,1/8,-5/16,-1/16,1/8, 1/8,1/8,1/4,-1/8,-1/8,-1/4, 1/8,1/8,-1/4,-1/8,-1/8,1/4; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4,p5,p6,p7,p8),dp; //This is the Fourier transform. matrix qtop[6][8] = 1,1,1,1,1,1,1,1, 1,-1,1,1,-1,1,1,1, 1,0,-1,-1,0,1,1,-1, 1,3/7,-1/7,3/7,-1/7,-5/7,-1/7,-1/7, 1,-1,1,-1/3,1/3,-1/3,-1/3,-1/3, 1,0,-1,-1,0,1,-1,1; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(c0,c1,e0,e1,g0,g1),dp; ideal P = c0^3*e0^4*g0^5+c0^3*e0^4*g1^5+3*c0^3*e0^3*e1*g0^4*g1+c0^3*e0^3*e1*g0^3*g1^2+c0^3*e0^3*e1*g0^2*g1^3+3*c0^3*e0^3*e1*g0*g1^4+6*c0^3*e0^2*e1^2*g0^3*g1^2+6*c0^3*e0^2*e1^2*g0^2*g1^3+3*c0^3*e0*e1^3*g0^4*g1+c0^3*e0*e1^3*g0^3*g1^2+c0^3*e0*e1^3*g0^2*g1^3+3*c0^3*e0*e1^3*g0*g1^4+c0^3*e1^4*g0^5+c0^3*e1^4*g1^5+2*c0^2*c1*e0^4*g0^4*g1+c0^2*c1*e0^4*g0^3*g1^2+c0^2*c1*e0^4*g0^2*g1^3+2*c0^2*c1*e0^4*g0*g1^4+2*c0^2*c1*e0^3*e1*g0^5+3*c0^2*c1*e0^3*e1*g0^4*g1+7*c0^2*c1*e0^3*e1*g0^3*g1^2+7*c0^2*c1*e0^3*e1*g0^2*g1^3+3*c0^2*c1*e0^3*e1*g0*g1^4+2*c0^2*c1*e0^3*e1*g1^5+2*c0^2*c1*e0^2*e1^2*g0^5+8*c0^2*c1*e0^2*e1^2*g0^4*g1+8*c0^2*c1*e0^2*e1^2*g0^3*g1^2+8*c0^2*c1*e0^2*e1^2*g0^2*g1^3+8*c0^2*c1*e0^2*e1^2*g0*g1^4+2*c0^2*c1*e0^2*e1^2*g1^5+2*c0^2*c1*e0*e1^3*g0^5+3*c0^2*c1*e0*e1^3*g0^4*g1+7*c0^2*c1*e0*e1^3*g0^3*g1^2+7*c0^2*c1*e0*e1^3*g0^2*g1^3+3*c0^2*c1*e0*e1^3*g0*g1^4+2*c0^2*c1*e0*e1^3*g1^5+2*c0^2*c1*e1^4*g0^4*g1+c0^2*c1*e1^4*g0^3*g1^2+c0^2*c1*e1^4*g0^2*g1^3+2*c0^2*c1*e1^4*g0*g1^4+2*c0*c1^2*e0^4*g0^4*g1+c0*c1^2*e0^4*g0^3*g1^2+c0*c1^2*e0^4*g0^2*g1^3+2*c0*c1^2*e0^4*g0*g1^4+2*c0*c1^2*e0^3*e1*g0^5+3*c0*c1^2*e0^3*e1*g0^4*g1+7*c0*c1^2*e0^3*e1*g0^3*g1^2+7*c0*c1^2*e0^3*e1*g0^2*g1^3+3*c0*c1^2*e0^3*e1*g0*g1^4+2*c0*c1^2*e0^3*e1*g1^5+2*c0*c1^2*e0^2*e1^2*g0^5+8*c0*c1^2*e0^2*e1^2*g0^4*g1+8*c0*c1^2*e0^2*e1^2*g0^3*g1^2+8*c0*c1^2*e0^2*e1^2*g0^2*g1^3+8*c0*c1^2*e0^2*e1^2*g0*g1^4+2*c0*c1^2*e0^2*e1^2*g1^5+2*c0*c1^2*e0*e1^3*g0^5+3*c0*c1^2*e0*e1^3*g0^4*g1+7*c0*c1^2*e0*e1^3*g0^3*g1^2+7*c0*c1^2*e0*e1^3*g0^2*g1^3+3*c0*c1^2*e0*e1^3*g0*g1^4+2*c0*c1^2*e0*e1^3*g1^5+2*c0*c1^2*e1^4*g0^4*g1+c0*c1^2*e1^4*g0^3*g1^2+c0*c1^2*e1^4*g0^2*g1^3+2*c0*c1^2*e1^4*g0*g1^4+c1^3*e0^4*g0^5+c1^3*e0^4*g1^5+3*c1^3*e0^3*e1*g0^4*g1+c1^3*e0^3*e1*g0^3*g1^2+c1^3*e0^3*e1*g0^2*g1^3+3*c1^3*e0^3*e1*g0*g1^4+6*c1^3*e0^2*e1^2*g0^3*g1^2+6*c1^3*e0^2*e1^2*g0^2*g1^3+3*c1^3*e0*e1^3*g0^4*g1+c1^3*e0*e1^3*g0^3*g1^2+c1^3*e0*e1^3*g0^2*g1^3+3*c1^3*e0*e1^3*g0*g1^4+c1^3*e1^4*g0^5+c1^3*e1^4*g1^5, 2*c0^3*e0^4*g0^4*g1+2*c0^3*e0^4*g0*g1^4+2*c0^3*e0^3*e1*g0^4*g1+6*c0^3*e0^3*e1*g0^3*g1^2+6*c0^3*e0^3*e1*g0^2*g1^3+2*c0^3*e0^3*e1*g0*g1^4+12*c0^3*e0^2*e1^2*g0^3*g1^2+12*c0^3*e0^2*e1^2*g0^2*g1^3+2*c0^3*e0*e1^3*g0^4*g1+6*c0^3*e0*e1^3*g0^3*g1^2+6*c0^3*e0*e1^3*g0^2*g1^3+2*c0^3*e0*e1^3*g0*g1^4+2*c0^3*e1^4*g0^4*g1+2*c0^3*e1^4*g0*g1^4+6*c0^2*c1*e0^4*g0^3*g1^2+6*c0^2*c1*e0^4*g0^2*g1^3+6*c0^2*c1*e0^3*e1*g0^4*g1+18*c0^2*c1*e0^3*e1*g0^3*g1^2+18*c0^2*c1*e0^3*e1*g0^2*g1^3+6*c0^2*c1*e0^3*e1*g0*g1^4+12*c0^2*c1*e0^2*e1^2*g0^4*g1+24*c0^2*c1*e0^2*e1^2*g0^3*g1^2+24*c0^2*c1*e0^2*e1^2*g0^2*g1^3+12*c0^2*c1*e0^2*e1^2*g0*g1^4+6*c0^2*c1*e0*e1^3*g0^4*g1+18*c0^2*c1*e0*e1^3*g0^3*g1^2+18*c0^2*c1*e0*e1^3*g0^2*g1^3+6*c0^2*c1*e0*e1^3*g0*g1^4+6*c0^2*c1*e1^4*g0^3*g1^2+6*c0^2*c1*e1^4*g0^2*g1^3+6*c0*c1^2*e0^4*g0^3*g1^2+6*c0*c1^2*e0^4*g0^2*g1^3+6*c0*c1^2*e0^3*e1*g0^4*g1+18*c0*c1^2*e0^3*e1*g0^3*g1^2+18*c0*c1^2*e0^3*e1*g0^2*g1^3+6*c0*c1^2*e0^3*e1*g0*g1^4+12*c0*c1^2*e0^2*e1^2*g0^4*g1+24*c0*c1^2*e0^2*e1^2*g0^3*g1^2+24*c0*c1^2*e0^2*e1^2*g0^2*g1^3+12*c0*c1^2*e0^2*e1^2*g0*g1^4+6*c0*c1^2*e0*e1^3*g0^4*g1+18*c0*c1^2*e0*e1^3*g0^3*g1^2+18*c0*c1^2*e0*e1^3*g0^2*g1^3+6*c0*c1^2*e0*e1^3*g0*g1^4+6*c0*c1^2*e1^4*g0^3*g1^2+6*c0*c1^2*e1^4*g0^2*g1^3+2*c1^3*e0^4*g0^4*g1+2*c1^3*e0^4*g0*g1^4+2*c1^3*e0^3*e1*g0^4*g1+6*c1^3*e0^3*e1*g0^3*g1^2+6*c1^3*e0^3*e1*g0^2*g1^3+2*c1^3*e0^3*e1*g0*g1^4+12*c1^3*e0^2*e1^2*g0^3*g1^2+12*c1^3*e0^2*e1^2*g0^2*g1^3+2*c1^3*e0*e1^3*g0^4*g1+6*c1^3*e0*e1^3*g0^3*g1^2+6*c1^3*e0*e1^3*g0^2*g1^3+2*c1^3*e0*e1^3*g0*g1^4+2*c1^3*e1^4*g0^4*g1+2*c1^3*e1^4*g0*g1^4, c0^3*e0^4*g0^3*g1^2+c0^3*e0^4*g0^2*g1^3+c0^3*e0^3*e1*g0^5+3*c0^3*e0^3*e1*g0^3*g1^2+3*c0^3*e0^3*e1*g0^2*g1^3+c0^3*e0^3*e1*g1^5+6*c0^3*e0^2*e1^2*g0^4*g1+6*c0^3*e0^2*e1^2*g0*g1^4+c0^3*e0*e1^3*g0^5+3*c0^3*e0*e1^3*g0^3*g1^2+3*c0^3*e0*e1^3*g0^2*g1^3+c0^3*e0*e1^3*g1^5+c0^3*e1^4*g0^3*g1^2+c0^3*e1^4*g0^2*g1^3+c0^2*c1*e0^4*g0^4*g1+2*c0^2*c1*e0^4*g0^3*g1^2+2*c0^2*c1*e0^4*g0^2*g1^3+c0^2*c1*e0^4*g0*g1^4+c0^2*c1*e0^3*e1*g0^5+6*c0^2*c1*e0^3*e1*g0^4*g1+5*c0^2*c1*e0^3*e1*g0^3*g1^2+5*c0^2*c1*e0^3*e1*g0^2*g1^3+6*c0^2*c1*e0^3*e1*g0*g1^4+c0^2*c1*e0^3*e1*g1^5+4*c0^2*c1*e0^2*e1^2*g0^5+4*c0^2*c1*e0^2*e1^2*g0^4*g1+10*c0^2*c1*e0^2*e1^2*g0^3*g1^2+10*c0^2*c1*e0^2*e1^2*g0^2*g1^3+4*c0^2*c1*e0^2*e1^2*g0*g1^4+4*c0^2*c1*e0^2*e1^2*g1^5+c0^2*c1*e0*e1^3*g0^5+6*c0^2*c1*e0*e1^3*g0^4*g1+5*c0^2*c1*e0*e1^3*g0^3*g1^2+5*c0^2*c1*e0*e1^3*g0^2*g1^3+6*c0^2*c1*e0*e1^3*g0*g1^4+c0^2*c1*e0*e1^3*g1^5+c0^2*c1*e1^4*g0^4*g1+2*c0^2*c1*e1^4*g0^3*g1^2+2*c0^2*c1*e1^4*g0^2*g1^3+c0^2*c1*e1^4*g0*g1^4+c0*c1^2*e0^4*g0^4*g1+2*c0*c1^2*e0^4*g0^3*g1^2+2*c0*c1^2*e0^4*g0^2*g1^3+c0*c1^2*e0^4*g0*g1^4+c0*c1^2*e0^3*e1*g0^5+6*c0*c1^2*e0^3*e1*g0^4*g1+5*c0*c1^2*e0^3*e1*g0^3*g1^2+5*c0*c1^2*e0^3*e1*g0^2*g1^3+6*c0*c1^2*e0^3*e1*g0*g1^4+c0*c1^2*e0^3*e1*g1^5+4*c0*c1^2*e0^2*e1^2*g0^5+4*c0*c1^2*e0^2*e1^2*g0^4*g1+10*c0*c1^2*e0^2*e1^2*g0^3*g1^2+10*c0*c1^2*e0^2*e1^2*g0^2*g1^3+4*c0*c1^2*e0^2*e1^2*g0*g1^4+4*c0*c1^2*e0^2*e1^2*g1^5+c0*c1^2*e0*e1^3*g0^5+6*c0*c1^2*e0*e1^3*g0^4*g1+5*c0*c1^2*e0*e1^3*g0^3*g1^2+5*c0*c1^2*e0*e1^3*g0^2*g1^3+6*c0*c1^2*e0*e1^3*g0*g1^4+c0*c1^2*e0*e1^3*g1^5+c0*c1^2*e1^4*g0^4*g1+2*c0*c1^2*e1^4*g0^3*g1^2+2*c0*c1^2*e1^4*g0^2*g1^3+c0*c1^2*e1^4*g0*g1^4+c1^3*e0^4*g0^3*g1^2+c1^3*e0^4*g0^2*g1^3+c1^3*e0^3*e1*g0^5+3*c1^3*e0^3*e1*g0^3*g1^2+3*c1^3*e0^3*e1*g0^2*g1^3+c1^3*e0^3*e1*g1^5+6*c1^3*e0^2*e1^2*g0^4*g1+6*c1^3*e0^2*e1^2*g0*g1^4+c1^3*e0*e1^3*g0^5+3*c1^3*e0*e1^3*g0^3*g1^2+3*c1^3*e0*e1^3*g0^2*g1^3+c1^3*e0*e1^3*g1^5+c1^3*e1^4*g0^3*g1^2+c1^3*e1^4*g0^2*g1^3, c0^3*e0^4*g0^4*g1+c0^3*e0^4*g0*g1^4+c0^3*e0^3*e1*g0^5+3*c0^3*e0^3*e1*g0^3*g1^2+3*c0^3*e0^3*e1*g0^2*g1^3+c0^3*e0^3*e1*g1^5+4*c0^3*e0^2*e1^2*g0^4*g1+2*c0^3*e0^2*e1^2*g0^3*g1^2+2*c0^3*e0^2*e1^2*g0^2*g1^3+4*c0^3*e0^2*e1^2*g0*g1^4+c0^3*e0*e1^3*g0^5+3*c0^3*e0*e1^3*g0^3*g1^2+3*c0^3*e0*e1^3*g0^2*g1^3+c0^3*e0*e1^3*g1^5+c0^3*e1^4*g0^4*g1+c0^3*e1^4*g0*g1^4+3*c0^2*c1*e0^4*g0^3*g1^2+3*c0^2*c1*e0^4*g0^2*g1^3+c0^2*c1*e0^3*e1*g0^5+6*c0^2*c1*e0^3*e1*g0^4*g1+5*c0^2*c1*e0^3*e1*g0^3*g1^2+5*c0^2*c1*e0^3*e1*g0^2*g1^3+6*c0^2*c1*e0^3*e1*g0*g1^4+c0^2*c1*e0^3*e1*g1^5+4*c0^2*c1*e0^2*e1^2*g0^5+6*c0^2*c1*e0^2*e1^2*g0^4*g1+8*c0^2*c1*e0^2*e1^2*g0^3*g1^2+8*c0^2*c1*e0^2*e1^2*g0^2*g1^3+6*c0^2*c1*e0^2*e1^2*g0*g1^4+4*c0^2*c1*e0^2*e1^2*g1^5+c0^2*c1*e0*e1^3*g0^5+6*c0^2*c1*e0*e1^3*g0^4*g1+5*c0^2*c1*e0*e1^3*g0^3*g1^2+5*c0^2*c1*e0*e1^3*g0^2*g1^3+6*c0^2*c1*e0*e1^3*g0*g1^4+c0^2*c1*e0*e1^3*g1^5+3*c0^2*c1*e1^4*g0^3*g1^2+3*c0^2*c1*e1^4*g0^2*g1^3+3*c0*c1^2*e0^4*g0^3*g1^2+3*c0*c1^2*e0^4*g0^2*g1^3+c0*c1^2*e0^3*e1*g0^5+6*c0*c1^2*e0^3*e1*g0^4*g1+5*c0*c1^2*e0^3*e1*g0^3*g1^2+5*c0*c1^2*e0^3*e1*g0^2*g1^3+6*c0*c1^2*e0^3*e1*g0*g1^4+c0*c1^2*e0^3*e1*g1^5+4*c0*c1^2*e0^2*e1^2*g0^5+6*c0*c1^2*e0^2*e1^2*g0^4*g1+8*c0*c1^2*e0^2*e1^2*g0^3*g1^2+8*c0*c1^2*e0^2*e1^2*g0^2*g1^3+6*c0*c1^2*e0^2*e1^2*g0*g1^4+4*c0*c1^2*e0^2*e1^2*g1^5+c0*c1^2*e0*e1^3*g0^5+6*c0*c1^2*e0*e1^3*g0^4*g1+5*c0*c1^2*e0*e1^3*g0^3*g1^2+5*c0*c1^2*e0*e1^3*g0^2*g1^3+6*c0*c1^2*e0*e1^3*g0*g1^4+c0*c1^2*e0*e1^3*g1^5+3*c0*c1^2*e1^4*g0^3*g1^2+3*c0*c1^2*e1^4*g0^2*g1^3+c1^3*e0^4*g0^4*g1+c1^3*e0^4*g0*g1^4+c1^3*e0^3*e1*g0^5+3*c1^3*e0^3*e1*g0^3*g1^2+3*c1^3*e0^3*e1*g0^2*g1^3+c1^3*e0^3*e1*g1^5+4*c1^3*e0^2*e1^2*g0^4*g1+2*c1^3*e0^2*e1^2*g0^3*g1^2+2*c1^3*e0^2*e1^2*g0^2*g1^3+4*c1^3*e0^2*e1^2*g0*g1^4+c1^3*e0*e1^3*g0^5+3*c1^3*e0*e1^3*g0^3*g1^2+3*c1^3*e0*e1^3*g0^2*g1^3+c1^3*e0*e1^3*g1^5+c1^3*e1^4*g0^4*g1+c1^3*e1^4*g0*g1^4, 6*c0^3*e0^4*g0^3*g1^2+6*c0^3*e0^4*g0^2*g1^3+6*c0^3*e0^3*e1*g0^4*g1+18*c0^3*e0^3*e1*g0^3*g1^2+18*c0^3*e0^3*e1*g0^2*g1^3+6*c0^3*e0^3*e1*g0*g1^4+12*c0^3*e0^2*e1^2*g0^4*g1+24*c0^3*e0^2*e1^2*g0^3*g1^2+24*c0^3*e0^2*e1^2*g0^2*g1^3+12*c0^3*e0^2*e1^2*g0*g1^4+6*c0^3*e0*e1^3*g0^4*g1+18*c0^3*e0*e1^3*g0^3*g1^2+18*c0^3*e0*e1^3*g0^2*g1^3+6*c0^3*e0*e1^3*g0*g1^4+6*c0^3*e1^4*g0^3*g1^2+6*c0^3*e1^4*g0^2*g1^3+6*c0^2*c1*e0^4*g0^4*g1+12*c0^2*c1*e0^4*g0^3*g1^2+12*c0^2*c1*e0^4*g0^2*g1^3+6*c0^2*c1*e0^4*g0*g1^4+18*c0^2*c1*e0^3*e1*g0^4*g1+54*c0^2*c1*e0^3*e1*g0^3*g1^2+54*c0^2*c1*e0^3*e1*g0^2*g1^3+18*c0^2*c1*e0^3*e1*g0*g1^4+24*c0^2*c1*e0^2*e1^2*g0^4*g1+84*c0^2*c1*e0^2*e1^2*g0^3*g1^2+84*c0^2*c1*e0^2*e1^2*g0^2*g1^3+24*c0^2*c1*e0^2*e1^2*g0*g1^4+18*c0^2*c1*e0*e1^3*g0^4*g1+54*c0^2*c1*e0*e1^3*g0^3*g1^2+54*c0^2*c1*e0*e1^3*g0^2*g1^3+18*c0^2*c1*e0*e1^3*g0*g1^4+6*c0^2*c1*e1^4*g0^4*g1+12*c0^2*c1*e1^4*g0^3*g1^2+12*c0^2*c1*e1^4*g0^2*g1^3+6*c0^2*c1*e1^4*g0*g1^4+6*c0*c1^2*e0^4*g0^4*g1+12*c0*c1^2*e0^4*g0^3*g1^2+12*c0*c1^2*e0^4*g0^2*g1^3+6*c0*c1^2*e0^4*g0*g1^4+18*c0*c1^2*e0^3*e1*g0^4*g1+54*c0*c1^2*e0^3*e1*g0^3*g1^2+54*c0*c1^2*e0^3*e1*g0^2*g1^3+18*c0*c1^2*e0^3*e1*g0*g1^4+24*c0*c1^2*e0^2*e1^2*g0^4*g1+84*c0*c1^2*e0^2*e1^2*g0^3*g1^2+84*c0*c1^2*e0^2*e1^2*g0^2*g1^3+24*c0*c1^2*e0^2*e1^2*g0*g1^4+18*c0*c1^2*e0*e1^3*g0^4*g1+54*c0*c1^2*e0*e1^3*g0^3*g1^2+54*c0*c1^2*e0*e1^3*g0^2*g1^3+18*c0*c1^2*e0*e1^3*g0*g1^4+6*c0*c1^2*e1^4*g0^4*g1+12*c0*c1^2*e1^4*g0^3*g1^2+12*c0*c1^2*e1^4*g0^2*g1^3+6*c0*c1^2*e1^4*g0*g1^4+6*c1^3*e0^4*g0^3*g1^2+6*c1^3*e0^4*g0^2*g1^3+6*c1^3*e0^3*e1*g0^4*g1+18*c1^3*e0^3*e1*g0^3*g1^2+18*c1^3*e0^3*e1*g0^2*g1^3+6*c1^3*e0^3*e1*g0*g1^4+12*c1^3*e0^2*e1^2*g0^4*g1+24*c1^3*e0^2*e1^2*g0^3*g1^2+24*c1^3*e0^2*e1^2*g0^2*g1^3+12*c1^3*e0^2*e1^2*g0*g1^4+6*c1^3*e0*e1^3*g0^4*g1+18*c1^3*e0*e1^3*g0^3*g1^2+18*c1^3*e0*e1^3*g0^2*g1^3+6*c1^3*e0*e1^3*g0*g1^4+6*c1^3*e1^4*g0^3*g1^2+6*c1^3*e1^4*g0^2*g1^3, c0^3*e0^4*g0^3*g1^2+c0^3*e0^4*g0^2*g1^3+3*c0^3*e0^3*e1*g0^4*g1+c0^3*e0^3*e1*g0^3*g1^2+c0^3*e0^3*e1*g0^2*g1^3+3*c0^3*e0^3*e1*g0*g1^4+2*c0^3*e0^2*e1^2*g0^5+4*c0^3*e0^2*e1^2*g0^3*g1^2+4*c0^3*e0^2*e1^2*g0^2*g1^3+2*c0^3*e0^2*e1^2*g1^5+3*c0^3*e0*e1^3*g0^4*g1+c0^3*e0*e1^3*g0^3*g1^2+c0^3*e0*e1^3*g0^2*g1^3+3*c0^3*e0*e1^3*g0*g1^4+c0^3*e1^4*g0^3*g1^2+c0^3*e1^4*g0^2*g1^3+c0^2*c1*e0^4*g0^5+2*c0^2*c1*e0^4*g0^4*g1+2*c0^2*c1*e0^4*g0*g1^4+c0^2*c1*e0^4*g1^5+2*c0^2*c1*e0^3*e1*g0^5+3*c0^2*c1*e0^3*e1*g0^4*g1+7*c0^2*c1*e0^3*e1*g0^3*g1^2+7*c0^2*c1*e0^3*e1*g0^2*g1^3+3*c0^2*c1*e0^3*e1*g0*g1^4+2*c0^2*c1*e0^3*e1*g1^5+8*c0^2*c1*e0^2*e1^2*g0^4*g1+10*c0^2*c1*e0^2*e1^2*g0^3*g1^2+10*c0^2*c1*e0^2*e1^2*g0^2*g1^3+8*c0^2*c1*e0^2*e1^2*g0*g1^4+2*c0^2*c1*e0*e1^3*g0^5+3*c0^2*c1*e0*e1^3*g0^4*g1+7*c0^2*c1*e0*e1^3*g0^3*g1^2+7*c0^2*c1*e0*e1^3*g0^2*g1^3+3*c0^2*c1*e0*e1^3*g0*g1^4+2*c0^2*c1*e0*e1^3*g1^5+c0^2*c1*e1^4*g0^5+2*c0^2*c1*e1^4*g0^4*g1+2*c0^2*c1*e1^4*g0*g1^4+c0^2*c1*e1^4*g1^5+c0*c1^2*e0^4*g0^5+2*c0*c1^2*e0^4*g0^4*g1+2*c0*c1^2*e0^4*g0*g1^4+c0*c1^2*e0^4*g1^5+2*c0*c1^2*e0^3*e1*g0^5+3*c0*c1^2*e0^3*e1*g0^4*g1+7*c0*c1^2*e0^3*e1*g0^3*g1^2+7*c0*c1^2*e0^3*e1*g0^2*g1^3+3*c0*c1^2*e0^3*e1*g0*g1^4+2*c0*c1^2*e0^3*e1*g1^5+8*c0*c1^2*e0^2*e1^2*g0^4*g1+10*c0*c1^2*e0^2*e1^2*g0^3*g1^2+10*c0*c1^2*e0^2*e1^2*g0^2*g1^3+8*c0*c1^2*e0^2*e1^2*g0*g1^4+2*c0*c1^2*e0*e1^3*g0^5+3*c0*c1^2*e0*e1^3*g0^4*g1+7*c0*c1^2*e0*e1^3*g0^3*g1^2+7*c0*c1^2*e0*e1^3*g0^2*g1^3+3*c0*c1^2*e0*e1^3*g0*g1^4+2*c0*c1^2*e0*e1^3*g1^5+c0*c1^2*e1^4*g0^5+2*c0*c1^2*e1^4*g0^4*g1+2*c0*c1^2*e1^4*g0*g1^4+c0*c1^2*e1^4*g1^5+c1^3*e0^4*g0^3*g1^2+c1^3*e0^4*g0^2*g1^3+3*c1^3*e0^3*e1*g0^4*g1+c1^3*e0^3*e1*g0^3*g1^2+c1^3*e0^3*e1*g0^2*g1^3+3*c1^3*e0^3*e1*g0*g1^4+2*c1^3*e0^2*e1^2*g0^5+4*c1^3*e0^2*e1^2*g0^3*g1^2+4*c1^3*e0^2*e1^2*g0^2*g1^3+2*c1^3*e0^2*e1^2*g1^5+3*c1^3*e0*e1^3*g0^4*g1+c1^3*e0*e1^3*g0^3*g1^2+c1^3*e0*e1^3*g0^2*g1^3+3*c1^3*e0*e1^3*g0*g1^4+c1^3*e1^4*g0^3*g1^2+c1^3*e1^4*g0^2*g1^3, 2*c0^3*e0^4*g0^4*g1+2*c0^3*e0^4*g0*g1^4+2*c0^3*e0^3*e1*g0^5+6*c0^3*e0^3*e1*g0^3*g1^2+6*c0^3*e0^3*e1*g0^2*g1^3+2*c0^3*e0^3*e1*g1^5+8*c0^3*e0^2*e1^2*g0^4*g1+4*c0^3*e0^2*e1^2*g0^3*g1^2+4*c0^3*e0^2*e1^2*g0^2*g1^3+8*c0^3*e0^2*e1^2*g0*g1^4+2*c0^3*e0*e1^3*g0^5+6*c0^3*e0*e1^3*g0^3*g1^2+6*c0^3*e0*e1^3*g0^2*g1^3+2*c0^3*e0*e1^3*g1^5+2*c0^3*e1^4*g0^4*g1+2*c0^3*e1^4*g0*g1^4+2*c0^2*c1*e0^4*g0^5+2*c0^2*c1*e0^4*g0^4*g1+2*c0^2*c1*e0^4*g0^3*g1^2+2*c0^2*c1*e0^4*g0^2*g1^3+2*c0^2*c1*e0^4*g0*g1^4+2*c0^2*c1*e0^4*g1^5+2*c0^2*c1*e0^3*e1*g0^5+12*c0^2*c1*e0^3*e1*g0^4*g1+10*c0^2*c1*e0^3*e1*g0^3*g1^2+10*c0^2*c1*e0^3*e1*g0^2*g1^3+12*c0^2*c1*e0^3*e1*g0*g1^4+2*c0^2*c1*e0^3*e1*g1^5+4*c0^2*c1*e0^2*e1^2*g0^5+8*c0^2*c1*e0^2*e1^2*g0^4*g1+24*c0^2*c1*e0^2*e1^2*g0^3*g1^2+24*c0^2*c1*e0^2*e1^2*g0^2*g1^3+8*c0^2*c1*e0^2*e1^2*g0*g1^4+4*c0^2*c1*e0^2*e1^2*g1^5+2*c0^2*c1*e0*e1^3*g0^5+12*c0^2*c1*e0*e1^3*g0^4*g1+10*c0^2*c1*e0*e1^3*g0^3*g1^2+10*c0^2*c1*e0*e1^3*g0^2*g1^3+12*c0^2*c1*e0*e1^3*g0*g1^4+2*c0^2*c1*e0*e1^3*g1^5+2*c0^2*c1*e1^4*g0^5+2*c0^2*c1*e1^4*g0^4*g1+2*c0^2*c1*e1^4*g0^3*g1^2+2*c0^2*c1*e1^4*g0^2*g1^3+2*c0^2*c1*e1^4*g0*g1^4+2*c0^2*c1*e1^4*g1^5+2*c0*c1^2*e0^4*g0^5+2*c0*c1^2*e0^4*g0^4*g1+2*c0*c1^2*e0^4*g0^3*g1^2+2*c0*c1^2*e0^4*g0^2*g1^3+2*c0*c1^2*e0^4*g0*g1^4+2*c0*c1^2*e0^4*g1^5+2*c0*c1^2*e0^3*e1*g0^5+12*c0*c1^2*e0^3*e1*g0^4*g1+10*c0*c1^2*e0^3*e1*g0^3*g1^2+10*c0*c1^2*e0^3*e1*g0^2*g1^3+12*c0*c1^2*e0^3*e1*g0*g1^4+2*c0*c1^2*e0^3*e1*g1^5+4*c0*c1^2*e0^2*e1^2*g0^5+8*c0*c1^2*e0^2*e1^2*g0^4*g1+24*c0*c1^2*e0^2*e1^2*g0^3*g1^2+24*c0*c1^2*e0^2*e1^2*g0^2*g1^3+8*c0*c1^2*e0^2*e1^2*g0*g1^4+4*c0*c1^2*e0^2*e1^2*g1^5+2*c0*c1^2*e0*e1^3*g0^5+12*c0*c1^2*e0*e1^3*g0^4*g1+10*c0*c1^2*e0*e1^3*g0^3*g1^2+10*c0*c1^2*e0*e1^3*g0^2*g1^3+12*c0*c1^2*e0*e1^3*g0*g1^4+2*c0*c1^2*e0*e1^3*g1^5+2*c0*c1^2*e1^4*g0^5+2*c0*c1^2*e1^4*g0^4*g1+2*c0*c1^2*e1^4*g0^3*g1^2+2*c0*c1^2*e1^4*g0^2*g1^3+2*c0*c1^2*e1^4*g0*g1^4+2*c0*c1^2*e1^4*g1^5+2*c1^3*e0^4*g0^4*g1+2*c1^3*e0^4*g0*g1^4+2*c1^3*e0^3*e1*g0^5+6*c1^3*e0^3*e1*g0^3*g1^2+6*c1^3*e0^3*e1*g0^2*g1^3+2*c1^3*e0^3*e1*g1^5+8*c1^3*e0^2*e1^2*g0^4*g1+4*c1^3*e0^2*e1^2*g0^3*g1^2+4*c1^3*e0^2*e1^2*g0^2*g1^3+8*c1^3*e0^2*e1^2*g0*g1^4+2*c1^3*e0*e1^3*g0^5+6*c1^3*e0*e1^3*g0^3*g1^2+6*c1^3*e0*e1^3*g0^2*g1^3+2*c1^3*e0*e1^3*g1^5+2*c1^3*e1^4*g0^4*g1+2*c1^3*e1^4*g0*g1^4, 2*c0^3*e0^4*g0^3*g1^2+2*c0^3*e0^4*g0^2*g1^3+6*c0^3*e0^3*e1*g0^4*g1+2*c0^3*e0^3*e1*g0^3*g1^2+2*c0^3*e0^3*e1*g0^2*g1^3+6*c0^3*e0^3*e1*g0*g1^4+4*c0^3*e0^2*e1^2*g0^5+8*c0^3*e0^2*e1^2*g0^3*g1^2+8*c0^3*e0^2*e1^2*g0^2*g1^3+4*c0^3*e0^2*e1^2*g1^5+6*c0^3*e0*e1^3*g0^4*g1+2*c0^3*e0*e1^3*g0^3*g1^2+2*c0^3*e0*e1^3*g0^2*g1^3+6*c0^3*e0*e1^3*g0*g1^4+2*c0^3*e1^4*g0^3*g1^2+2*c0^3*e1^4*g0^2*g1^3+2*c0^2*c1*e0^4*g0^4*g1+4*c0^2*c1*e0^4*g0^3*g1^2+4*c0^2*c1*e0^4*g0^2*g1^3+2*c0^2*c1*e0^4*g0*g1^4+4*c0^2*c1*e0^3*e1*g0^5+6*c0^2*c1*e0^3*e1*g0^4*g1+14*c0^2*c1*e0^3*e1*g0^3*g1^2+14*c0^2*c1*e0^3*e1*g0^2*g1^3+6*c0^2*c1*e0^3*e1*g0*g1^4+4*c0^2*c1*e0^3*e1*g1^5+4*c0^2*c1*e0^2*e1^2*g0^5+20*c0^2*c1*e0^2*e1^2*g0^4*g1+12*c0^2*c1*e0^2*e1^2*g0^3*g1^2+12*c0^2*c1*e0^2*e1^2*g0^2*g1^3+20*c0^2*c1*e0^2*e1^2*g0*g1^4+4*c0^2*c1*e0^2*e1^2*g1^5+4*c0^2*c1*e0*e1^3*g0^5+6*c0^2*c1*e0*e1^3*g0^4*g1+14*c0^2*c1*e0*e1^3*g0^3*g1^2+14*c0^2*c1*e0*e1^3*g0^2*g1^3+6*c0^2*c1*e0*e1^3*g0*g1^4+4*c0^2*c1*e0*e1^3*g1^5+2*c0^2*c1*e1^4*g0^4*g1+4*c0^2*c1*e1^4*g0^3*g1^2+4*c0^2*c1*e1^4*g0^2*g1^3+2*c0^2*c1*e1^4*g0*g1^4+2*c0*c1^2*e0^4*g0^4*g1+4*c0*c1^2*e0^4*g0^3*g1^2+4*c0*c1^2*e0^4*g0^2*g1^3+2*c0*c1^2*e0^4*g0*g1^4+4*c0*c1^2*e0^3*e1*g0^5+6*c0*c1^2*e0^3*e1*g0^4*g1+14*c0*c1^2*e0^3*e1*g0^3*g1^2+14*c0*c1^2*e0^3*e1*g0^2*g1^3+6*c0*c1^2*e0^3*e1*g0*g1^4+4*c0*c1^2*e0^3*e1*g1^5+4*c0*c1^2*e0^2*e1^2*g0^5+20*c0*c1^2*e0^2*e1^2*g0^4*g1+12*c0*c1^2*e0^2*e1^2*g0^3*g1^2+12*c0*c1^2*e0^2*e1^2*g0^2*g1^3+20*c0*c1^2*e0^2*e1^2*g0*g1^4+4*c0*c1^2*e0^2*e1^2*g1^5+4*c0*c1^2*e0*e1^3*g0^5+6*c0*c1^2*e0*e1^3*g0^4*g1+14*c0*c1^2*e0*e1^3*g0^3*g1^2+14*c0*c1^2*e0*e1^3*g0^2*g1^3+6*c0*c1^2*e0*e1^3*g0*g1^4+4*c0*c1^2*e0*e1^3*g1^5+2*c0*c1^2*e1^4*g0^4*g1+4*c0*c1^2*e1^4*g0^3*g1^2+4*c0*c1^2*e1^4*g0^2*g1^3+2*c0*c1^2*e1^4*g0*g1^4+2*c1^3*e0^4*g0^3*g1^2+2*c1^3*e0^4*g0^2*g1^3+6*c1^3*e0^3*e1*g0^4*g1+2*c1^3*e0^3*e1*g0^3*g1^2+2*c1^3*e0^3*e1*g0^2*g1^3+6*c1^3*e0^3*e1*g0*g1^4+4*c1^3*e0^2*e1^2*g0^5+8*c1^3*e0^2*e1^2*g0^3*g1^2+8*c1^3*e0^2*e1^2*g0^2*g1^3+4*c1^3*e0^2*e1^2*g1^5+6*c1^3*e0*e1^3*g0^4*g1+2*c1^3*e0*e1^3*g0^3*g1^2+2*c1^3*e0*e1^3*g0^2*g1^3+6*c1^3*e0*e1^3*g0*g1^4+2*c1^3*e1^4*g0^3*g1^2+2*c1^3*e1^4*g0^2*g1^3; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(0,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }