//This is the ideal Fourier invariants. ring rQ = 0, (q1,q2,q3,q4,q5), dp; ideal Invariants = q3*q4-q2*q5, q2*q4-q1*q5, q2^2-q1*q3; // This is the inverse of the Fourier transform. matrix ptoq[5][5] = 1/16,3/8,1/16,1/4,1/4, 1/4,0,-1/4,1/2,-1/2, 3/8,-3/4,3/8,0,0, 1/4,0,-1/4,-1/2,1/2, 1/16,3/8,1/16,-1/4,-1/4; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4,p5),dp; //This is the Fourier transform. matrix qtop[5][5] = 1,1,1,1,1, 1,0,-1/3,0,1, 1,-1,1,-1,1, 1,1/2,0,-1/2,-1, 1,-1/2,0,1/2,-1; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(b0,b1,f0,f1),dp; ideal P = b0^2*f0^5+b0^2*f1^5+2*b0*b1*f0^4*f1+2*b0*b1*f0*f1^4+b1^2*f0^5+b1^2*f1^5, 4*b0^2*f0^4*f1+4*b0^2*f0*f1^4+8*b0*b1*f0^3*f1^2+8*b0*b1*f0^2*f1^3+4*b1^2*f0^4*f1+4*b1^2*f0*f1^4, 6*b0^2*f0^3*f1^2+6*b0^2*f0^2*f1^3+12*b0*b1*f0^3*f1^2+12*b0*b1*f0^2*f1^3+6*b1^2*f0^3*f1^2+6*b1^2*f0^2*f1^3, 4*b0^2*f0^3*f1^2+4*b0^2*f0^2*f1^3+8*b0*b1*f0^4*f1+8*b0*b1*f0*f1^4+4*b1^2*f0^3*f1^2+4*b1^2*f0^2*f1^3, b0^2*f0^4*f1+b0^2*f0*f1^4+2*b0*b1*f0^5+2*b0*b1*f1^5+b1^2*f0^4*f1+b1^2*f0*f1^4; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(0,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }