//This is the ideal Fourier invariants. ring rQ = 0, (q1,q2,q3,q4,q5,q6,q7,q8), dp; ideal Invariants = q7^2-q6*q8, q6*q7-q5*q8, q4*q7-q3*q8, q3*q7-q2*q8, q6^2-q5*q7, q4*q6-q2*q8, q3*q6-q2*q7, q2*q6-q1*q8, q4*q5-q2*q7, q3*q5-q1*q8, q2*q5-q1*q7, q3^2-q2*q4, q2^2-q1*q4; // This is the inverse of the Fourier transform. matrix ptoq[11][8] = 1/256,9/128,3/32,21/256,3/64,9/64,21/64,15/64, 3/64,9/32,0,-21/64,3/8,9/16,0,-15/16, 9/128,9/64,-9/16,45/128,9/32,-9/32,-9/32,9/32, 9/64,-9/32,0,9/64,9/16,0,-27/16,9/8, 3/64,9/32,0,-21/64,0,-9/16,3/8,3/16, 9/32,-9/16,0,9/32,0,-9/8,9/4,-9/8, 3/32,-9/16,3/4,-9/32,0,0,0,0, 3/256,27/128,9/32,63/256,-3/64,-9/64,-21/64,-15/64, 3/32,9/16,0,-21/32,-3/8,0,-3/8,3/4, 9/128,9/64,-9/16,45/128,-9/32,9/32,9/32,-9/32, 9/64,-9/32,0,9/64,-9/16,9/8,-9/16,0; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11),dp; //This is the Fourier transform. matrix qtop[8][11] = 1,1,1,1,1,1,1,1,1,1,1, 1,1/3,1/9,-1/9,1/3,-1/9,-1/3,1,1/3,1/9,-1/9, 1,0,-1/3,0,0,0,1/3,1,0,-1/3,0, 1,-1/3,5/21,1/21,-1/3,1/21,-1/7,1,-1/3,5/21,1/21, 1,2/3,1/3,1/3,0,0,0,-1/3,-1/3,-1/3,-1/3, 1,1/3,-1/9,0,-1/3,-1/9,0,-1/3,0,1/9,2/9, 1,0,-1/21,-1/7,2/21,2/21,0,-1/3,-1/21,1/21,-1/21, 1,-1/3,1/15,2/15,1/15,-1/15,0,-1/3,2/15,-1/15,0; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(b0,b1,f0,f1),dp; ideal P = b0^2*f0^5+3*b0^2*f1^5+6*b0*b1*f0^4*f1+6*b0*b1*f0*f1^4+12*b0*b1*f1^5+3*b1^2*f0^5+6*b1^2*f0^4*f1+6*b1^2*f0*f1^4+21*b1^2*f1^5, 12*b0^2*f0^4*f1+12*b0^2*f0*f1^4+24*b0^2*f1^5+72*b0*b1*f0^3*f1^2+24*b0*b1*f0^2*f1^3+96*b0*b1*f0*f1^4+96*b0*b1*f1^5+36*b1^2*f0^4*f1+72*b1^2*f0^3*f1^2+24*b1^2*f0^2*f1^3+132*b1^2*f0*f1^4+168*b1^2*f1^5, 18*b0^2*f0^3*f1^2+18*b0^2*f0^2*f1^3+36*b0^2*f1^5+36*b0*b1*f0^3*f1^2+180*b0*b1*f0^2*f1^3+72*b0*b1*f0*f1^4+144*b0*b1*f1^5+90*b1^2*f0^3*f1^2+234*b1^2*f0^2*f1^3+72*b1^2*f0*f1^4+252*b1^2*f1^5, 36*b0^2*f0^3*f1^2+72*b0^2*f0*f1^4+36*b0^2*f1^5+360*b0*b1*f0^2*f1^3+360*b0*b1*f0*f1^4+144*b0*b1*f1^5+108*b1^2*f0^3*f1^2+360*b1^2*f0^2*f1^3+576*b1^2*f0*f1^4+252*b1^2*f1^5, 12*b0^2*f0^3*f1^2+12*b0^2*f0^2*f1^3+24*b0^2*f1^5+24*b0*b1*f0^4*f1+48*b0*b1*f0^3*f1^2+120*b0*b1*f0*f1^4+96*b0*b1*f1^5+24*b1^2*f0^4*f1+84*b1^2*f0^3*f1^2+36*b1^2*f0^2*f1^3+120*b1^2*f0*f1^4+168*b1^2*f1^5, 144*b0^2*f0^2*f1^3+72*b0^2*f0*f1^4+72*b0^2*f1^5+144*b0*b1*f0^3*f1^2+432*b0*b1*f0^2*f1^3+864*b0*b1*f0*f1^4+288*b0*b1*f1^5+144*b1^2*f0^3*f1^2+864*b1^2*f0^2*f1^3+1080*b1^2*f0*f1^4+504*b1^2*f1^5, 24*b0^2*f0^2*f1^3+72*b0^2*f0*f1^4+144*b0*b1*f0^2*f1^3+432*b0*b1*f0*f1^4+216*b1^2*f0^2*f1^3+648*b1^2*f0*f1^4, 3*b0^2*f0^4*f1+3*b0^2*f0*f1^4+6*b0^2*f1^5+6*b0*b1*f0^5+12*b0*b1*f0^4*f1+12*b0*b1*f0*f1^4+42*b0*b1*f1^5+6*b1^2*f0^5+21*b1^2*f0^4*f1+21*b1^2*f0*f1^4+60*b1^2*f1^5, 24*b0^2*f0^3*f1^2+48*b0^2*f0*f1^4+24*b0^2*f1^5+48*b0*b1*f0^4*f1+96*b0*b1*f0^3*f1^2+48*b0*b1*f0^2*f1^3+144*b0*b1*f0*f1^4+240*b0*b1*f1^5+48*b1^2*f0^4*f1+168*b1^2*f0^3*f1^2+48*b1^2*f0^2*f1^3+288*b1^2*f0*f1^4+312*b1^2*f1^5, 36*b0^2*f0^2*f1^3+18*b0^2*f0*f1^4+18*b0^2*f1^5+72*b0*b1*f0^3*f1^2+144*b0*b1*f0^2*f1^3+36*b0*b1*f0*f1^4+180*b0*b1*f1^5+72*b1^2*f0^3*f1^2+252*b1^2*f0^2*f1^3+90*b1^2*f0*f1^4+234*b1^2*f1^5, 36*b0^2*f0^2*f1^3+108*b0^2*f0*f1^4+72*b0*b1*f0^3*f1^2+288*b0*b1*f0^2*f1^3+288*b0*b1*f0*f1^4+216*b0*b1*f1^5+72*b1^2*f0^3*f1^2+396*b1^2*f0^2*f1^3+612*b1^2*f0*f1^4+216*b1^2*f1^5; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(1,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }