//This is the ideal Fourier invariants. ring rQ = 0,(q1,q2,q3),dp; ideal Invariants = q2^2-q1*q3; // This is the inverse of the Fourier transform. matrix ptoq[3][3] = 1/16,5/8,5/16, 5/16,5/8,-15/16, 5/8,-5/4,5/8; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3),dp; //This is the Fourier transform. matrix qtop[3][3] = 1,1,1, 1,1/5,-1/5, 1,-3/5,1/5; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(e0,e1),dp; ideal P = e0^5+e1^5, 5*e0^4*e1+5*e0*e1^4, 10*e0^3*e1^2+10*e0^2*e1^3; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(0,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }