//This is the ideal Fourier invariants. ring rQ = 0, (q1,q2,q3,q4), dp; ideal Invariants = q2*q3-q1*q4; // This is the inverse of the Fourier transform. matrix ptoq[5][4] = 1/16,3/16,7/16,5/16, 3/16,-3/16,9/16,-9/16, 9/16,-9/16,-9/16,9/16, 1/16,3/16,-5/16,1/16, 1/8,3/8,-1/8,-3/8; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4,p5),dp; //This is the Fourier transform. matrix qtop[4][5] = 1,1,1,1,1, 1,-1/3,-1/3,1,1, 1,3/7,-1/7,-5/7,-1/7, 1,-3/5,1/5,1/5,-3/5; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(c0,c1,f0,f1),dp; ideal P = c0^3*f0^5+c0^3*f1^5+2*c0^2*c1*f0^4*f1+c0^2*c1*f0^3*f1^2+c0^2*c1*f0^2*f1^3+2*c0^2*c1*f0*f1^4+2*c0*c1^2*f0^4*f1+c0*c1^2*f0^3*f1^2+c0*c1^2*f0^2*f1^3+2*c0*c1^2*f0*f1^4+c1^3*f0^5+c1^3*f1^5, 3*c0^3*f0^4*f1+3*c0^3*f0*f1^4+9*c0^2*c1*f0^3*f1^2+9*c0^2*c1*f0^2*f1^3+9*c0*c1^2*f0^3*f1^2+9*c0*c1^2*f0^2*f1^3+3*c1^3*f0^4*f1+3*c1^3*f0*f1^4, 9*c0^3*f0^3*f1^2+9*c0^3*f0^2*f1^3+9*c0^2*c1*f0^4*f1+18*c0^2*c1*f0^3*f1^2+18*c0^2*c1*f0^2*f1^3+9*c0^2*c1*f0*f1^4+9*c0*c1^2*f0^4*f1+18*c0*c1^2*f0^3*f1^2+18*c0*c1^2*f0^2*f1^3+9*c0*c1^2*f0*f1^4+9*c1^3*f0^3*f1^2+9*c1^3*f0^2*f1^3, c0^3*f0^3*f1^2+c0^3*f0^2*f1^3+c0^2*c1*f0^5+2*c0^2*c1*f0^4*f1+2*c0^2*c1*f0*f1^4+c0^2*c1*f1^5+c0*c1^2*f0^5+2*c0*c1^2*f0^4*f1+2*c0*c1^2*f0*f1^4+c0*c1^2*f1^5+c1^3*f0^3*f1^2+c1^3*f0^2*f1^3, 2*c0^3*f0^4*f1+2*c0^3*f0*f1^4+2*c0^2*c1*f0^5+2*c0^2*c1*f0^4*f1+2*c0^2*c1*f0^3*f1^2+2*c0^2*c1*f0^2*f1^3+2*c0^2*c1*f0*f1^4+2*c0^2*c1*f1^5+2*c0*c1^2*f0^5+2*c0*c1^2*f0^4*f1+2*c0*c1^2*f0^3*f1^2+2*c0*c1^2*f0^2*f1^3+2*c0*c1^2*f0*f1^4+2*c0*c1^2*f1^5+2*c1^3*f0^4*f1+2*c1^3*f0*f1^4; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(0,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }