//This is the ideal Fourier invariants. ring rQ = 0, (q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11,q12,q13,q14,q15,q16,q17,q18,q19), dp; ideal Invariants = q12*q18-q14*q19, q11*q17-q15*q19, q10*q17-q14*q19, q15*q16-q17*q18, q14*q16-q15*q18, q12*q16-q15*q19, q11*q16-q18*q19, q10*q16-q11*q18, q8*q16-q7*q17, q7*q16-q13*q18, q6*q16-q8*q18, q5*q16-q6*q18, q3*q16-q2*q17, q2*q16-q4*q18, q15^2-q14*q17, q13*q15-q7*q17, q11*q15-q14*q19, q10*q15-q9*q16, q8*q15-q6*q17, q7*q15-q8*q18, q6*q15-q5*q17, q4*q15-q2*q17, q2*q15-q3*q18, q13*q14-q8*q18, q12*q14-q9*q17, q11*q14-q9*q16, q10*q14-q9*q18, q8*q14-q5*q17, q7*q14-q6*q18, q6*q14-q5*q15, q4*q14-q3*q18, q3*q14-q1*q17, q2*q14-q1*q16, q12*q13-q8*q19, q11*q13-q7*q19, q9*q13-q5*q19, q10*q12-q9*q19, q7*q12-q6*q19, q4*q12-q3*q19, q11^2-q10*q19, q8*q11-q6*q19, q7*q11-q10*q13, q6*q11-q5*q19, q4*q11-q2*q19, q3*q11-q2*q12, q8*q10-q5*q19, q6*q10-q5*q11, q4*q10-q2*q11, q3*q10-q1*q19, q8*q9-q5*q12, q7*q9-q5*q11, q4*q9-q1*q19, q3*q9-q1*q12, q2*q9-q1*q11, q7*q8-q6*q13, q4*q8-q3*q13, q6*q7-q5*q13, q4*q7-q2*q13, q3*q7-q2*q8, q6^2-q5*q8, q4*q6-q2*q8, q2*q6-q1*q13, q4*q5-q1*q13, q3*q5-q1*q8, q2*q5-q1*q7, q4*q17*q18-q5*q13*q19, q3*q17*q18-q5*q8*q19, q2*q17*q18-q5*q7*q19, q1*q17*q18-q5^2*q19, q3*q15*q18-q5*q6*q19, q4*q17^2-q8^2*q19, q2*q17^2-q6*q8*q19, q4*q16*q17-q6*q13*q19, q4*q16^2-q7^2*q19, q7*q10*q13-q4*q16*q18, q5*q10*q13-q3*q18^2, q8^2*q12-q3*q17^2, q6*q8*q12-q3*q15*q17, q5*q8*q12-q1*q17^2, q5*q6*q12-q1*q15*q17, q5^2*q12-q1*q14*q17, q5^2*q11-q1*q15*q18, q7^2*q10-q4*q18^2, q5*q7*q10-q1*q16*q18, q5^2*q10-q1*q14*q18, q5*q6*q9-q1*q14*q15, q5^2*q9-q1*q14^2, q2^2*q3-q1*q4^2; // This is the inverse of the Fourier transform. matrix ptoq[31][19] = 1/256,3/128,3/256,3/128,7/128,3/32,7/64,9/128,7/256,3/64,9/128,5/256,3/64,9/128,3/32,7/64,7/128,3/64,3/128, 3/128,3/64,-3/128,-3/64,15/64,0,3/32,-15/64,9/128,3/32,-3/64,-9/128,-3/32,15/64,0,-3/32,-15/64,3/32,-3/64, 3/256,-3/128,9/256,-3/128,9/128,3/32,-15/64,15/128,21/256,-3/64,-9/128,15/256,-3/64,15/128,3/32,-15/64,9/128,-3/64,-3/128, 3/128,3/64,-3/128,-3/64,9/64,-3/16,3/32,3/64,-3/128,-3/32,9/64,3/128,-3/32,3/64,-3/16,3/32,9/64,-3/32,-3/64, 3/64,-3/32,-3/64,3/32,3/32,0,-3/16,-3/32,9/64,-3/16,3/32,-9/64,3/16,3/32,0,3/16,-3/32,-3/16,3/32, 3/128,-3/64,-3/128,3/64,9/64,-3/16,-3/32,3/64,-3/128,3/32,-9/64,3/128,3/32,3/64,-3/16,-3/32,9/64,3/32,3/64, 3/256,-3/128,9/256,-3/128,-3/128,-3/32,9/64,3/128,21/256,-3/64,-9/128,15/256,-3/64,3/128,-3/32,9/64,-3/128,-3/64,-3/128, 1/128,3/64,3/128,3/64,1/64,0,3/32,3/64,-5/128,-3/32,-3/64,1/128,3/32,-3/64,0,-3/32,-1/64,-3/32,3/64, 3/128,3/64,-3/128,-3/64,-3/64,3/16,3/32,-9/64,-3/128,-3/32,9/64,3/128,-3/32,-9/64,3/16,3/32,-3/64,-3/32,-3/64, 3/128,-3/64,9/128,-3/64,3/64,0,-3/32,9/64,-15/128,3/32,3/64,3/128,-3/32,-9/64,0,3/32,-3/64,3/32,-3/64, 3/128,3/64,-3/128,-3/64,-9/64,0,3/32,9/64,9/128,3/32,-3/64,-9/128,-3/32,-9/64,0,-3/32,9/64,3/32,-3/64, 3/128,-3/64,-3/128,3/64,-3/64,3/16,-3/32,-9/64,-3/128,3/32,-9/64,3/128,3/32,-9/64,3/16,-3/32,-3/64,3/32,3/64, 1/256,3/128,3/256,3/128,-5/128,-3/32,-1/64,-3/128,7/256,3/64,9/128,5/256,3/64,-3/128,-3/32,-1/64,-5/128,3/64,3/128, 1/64,3/32,3/64,3/32,3/32,3/16,1/8,3/32,-1/64,0,-3/32,-3/64,0,-3/32,-3/16,-1/8,-3/32,0,-3/32, 3/64,3/32,-3/64,-3/32,9/32,-3/16,0,-3/32,-3/64,0,-3/32,3/64,0,-9/32,3/16,0,3/32,0,3/32, 3/64,-3/32,9/64,-3/32,3/32,3/16,-3/8,3/32,-3/64,0,3/32,-9/64,0,-3/32,-3/16,3/8,-3/32,0,3/32, 3/64,3/32,-3/64,-3/32,3/32,3/16,0,-9/32,-3/64,0,-3/32,3/64,0,-3/32,-3/16,0,9/32,0,3/32, 3/32,-3/16,-3/32,3/16,3/16,-3/8,0,3/16,-3/32,0,3/16,3/32,0,-3/16,3/8,0,-3/16,0,-3/16, 3/64,-3/32,9/64,-3/32,-3/32,-3/16,3/8,-3/32,-3/64,0,3/32,-9/64,0,3/32,3/16,-3/8,3/32,0,3/32, 3/32,-3/16,-3/32,3/16,-3/16,3/8,0,-3/16,-3/32,0,3/16,3/32,0,3/16,-3/8,0,3/16,0,-3/16, 3/64,3/32,-3/64,-3/32,-3/32,-3/16,0,9/32,-3/64,0,-3/32,3/64,0,3/32,3/16,0,-9/32,0,3/32, 1/64,3/32,3/64,3/32,-3/32,-3/16,-1/8,-3/32,-1/64,0,-3/32,-3/64,0,3/32,3/16,1/8,3/32,0,-3/32, 3/64,3/32,-3/64,-3/32,-9/32,3/16,0,3/32,-3/64,0,-3/32,3/64,0,9/32,-3/16,0,-3/32,0,3/32, 1/128,3/64,3/128,3/64,-1/64,0,-3/32,-3/64,7/128,3/32,9/64,5/128,-3/32,-3/64,0,-3/32,-1/64,-3/32,3/64, 3/64,3/32,-3/64,-3/32,-3/32,0,-3/16,3/32,9/64,3/16,-3/32,-9/64,3/16,-3/32,0,3/16,3/32,-3/16,-3/32, 3/128,-3/64,9/128,-3/64,-3/64,0,3/32,-9/64,21/128,-3/32,-9/64,15/128,3/32,-9/64,0,3/32,-3/64,3/32,-3/64, 3/64,3/32,-3/64,-3/32,-3/32,0,-3/16,3/32,-3/64,-3/16,9/32,3/64,3/16,3/32,0,-3/16,-3/32,3/16,-3/32, 3/64,-3/32,-3/64,3/32,-3/32,0,3/16,3/32,9/64,-3/16,3/32,-9/64,-3/16,-3/32,0,-3/16,3/32,3/16,3/32, 3/64,-3/32,-3/64,3/32,-3/32,0,3/16,3/32,-3/64,3/16,-9/32,3/64,-3/16,3/32,0,3/16,-3/32,-3/16,3/32, 1/128,3/64,3/128,3/64,-1/64,0,-3/32,-3/64,-5/128,-3/32,-3/64,1/128,-3/32,3/64,0,3/32,1/64,3/32,3/64, 3/128,-3/64,9/128,-3/64,-3/64,0,3/32,-9/64,-15/128,3/32,3/64,3/128,3/32,9/64,0,-3/32,3/64,-3/32,-3/64; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p23,p24,p25,p26,p27,p28,p29,p30,p31),dp; //This is the Fourier transform. matrix qtop[19][31] = 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1/3,-1/3,1/3,-1/3,-1/3,-1/3,1,1/3,-1/3,1/3,-1/3,1,1,1/3,-1/3,1/3,-1/3,-1/3,-1/3,1/3,1,1/3,1,1/3,-1/3,1/3,-1/3,-1/3,1,-1/3, 1,-1/3,1,-1/3,-1/3,-1/3,1,1,-1/3,1,-1/3,-1/3,1,1,-1/3,1,-1/3,-1/3,1,-1/3,-1/3,1,-1/3,1,-1/3,1,-1/3,-1/3,-1/3,1,1, 1,-1/3,-1/3,-1/3,1/3,1/3,-1/3,1,-1/3,-1/3,-1/3,1/3,1,1,-1/3,-1/3,-1/3,1/3,-1/3,1/3,-1/3,1,-1/3,1,-1/3,-1/3,-1/3,1/3,1/3,1,-1/3, 1,5/7,3/7,3/7,1/7,3/7,-1/7,1/7,-1/7,1/7,-3/7,-1/7,-5/7,3/7,3/7,1/7,1/7,1/7,-1/7,-1/7,-1/7,-3/7,-3/7,-1/7,-1/7,-1/7,-1/7,-1/7,-1/7,-1/7,-1/7, 1,0,1/3,-1/3,0,-1/3,-1/3,0,1/3,0,0,1/3,-1,1/2,-1/6,1/6,1/6,-1/6,-1/6,1/6,-1/6,-1/2,1/6,0,0,0,0,0,0,0,0, 1,1/7,-5/7,1/7,-1/7,-1/7,3/7,3/7,1/7,-1/7,1/7,-1/7,-1/7,2/7,0,-2/7,0,0,2/7,0,0,-2/7,0,-3/7,-1/7,1/7,-1/7,1/7,1/7,-3/7,1/7, 1,-5/9,5/9,1/9,-1/9,1/9,1/9,1/3,-1/3,1/3,1/3,-1/3,-1/3,1/3,-1/9,1/9,-1/3,1/9,-1/9,-1/9,1/3,-1/3,1/9,-1/3,1/9,-1/3,1/9,1/9,1/9,-1/3,-1/3, 1,3/7,1,-1/7,3/7,-1/7,1,-5/7,-1/7,-5/7,3/7,-1/7,1,-1/7,-1/7,-1/7,-1/7,-1/7,-1/7,-1/7,-1/7,-1/7,-1/7,1,3/7,1,-1/7,3/7,-1/7,-5/7,-5/7, 1,1/3,-1/3,-1/3,-1/3,1/3,-1/3,-1,-1/3,1/3,1/3,1/3,1,0,0,0,0,0,0,0,0,0,0,1,1/3,-1/3,-1/3,-1/3,1/3,-1,1/3, 1,-1/9,-1/3,1/3,1/9,-1/3,-1/3,-1/3,1/3,1/9,-1/9,-1/3,1,-1/3,-1/9,1/9,-1/9,1/9,1/9,1/9,-1/9,-1/3,-1/9,1,-1/9,-1/3,1/3,1/9,-1/3,-1/3,1/9, 1,-3/5,1,1/5,-3/5,1/5,1,1/5,1/5,1/5,-3/5,1/5,1,-3/5,1/5,-3/5,1/5,1/5,-3/5,1/5,1/5,-3/5,1/5,1,-3/5,1,1/5,-3/5,1/5,1/5,1/5, 1,-1/3,-1/3,-1/3,1/3,1/3,-1/3,1,-1/3,-1/3,-1/3,1/3,1,0,0,0,0,0,0,0,0,0,0,-1,1/3,1/3,1/3,-1/3,-1/3,-1,1/3, 1,5/9,5/9,1/9,1/9,1/9,1/9,-1/3,-1/3,-1/3,-1/3,-1/3,-1/3,-1/3,-1/3,-1/9,-1/9,-1/9,1/9,1/9,1/9,1/3,1/3,-1/3,-1/9,-1/3,1/9,-1/9,1/9,1/3,1/3, 1,0,1/3,-1/3,0,-1/3,-1/3,0,1/3,0,0,1/3,-1,-1/2,1/6,-1/6,-1/6,1/6,1/6,-1/6,1/6,1/2,-1/6,0,0,0,0,0,0,0,0, 1,-1/7,-5/7,1/7,1/7,-1/7,3/7,-3/7,1/7,1/7,-1/7,-1/7,-1/7,-2/7,0,2/7,0,0,-2/7,0,0,2/7,0,-3/7,1/7,1/7,-1/7,-1/7,1/7,3/7,-1/7, 1,-5/7,3/7,3/7,-1/7,3/7,-1/7,-1/7,-1/7,-1/7,3/7,-1/7,-5/7,-3/7,1/7,-1/7,3/7,-1/7,1/7,1/7,-3/7,3/7,-1/7,-1/7,1/7,-1/7,-1/7,1/7,-1/7,1/7,1/7, 1,1/3,-1/3,-1/3,-1/3,1/3,-1/3,-1,-1/3,1/3,1/3,1/3,1,0,0,0,0,0,0,0,0,0,0,-1,-1/3,1/3,1/3,1/3,-1/3,1,-1/3, 1,-1/3,-1/3,-1/3,1/3,1/3,-1/3,1,-1/3,-1/3,-1/3,1/3,1,-1,1/3,1/3,1/3,-1/3,1/3,-1/3,1/3,-1,1/3,1,-1/3,-1/3,-1/3,1/3,1/3,1,-1/3; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(c0,c1,c2,f0,f1,f2),dp; ideal P = c0^3*f0^5+2*c0^3*f1^5+c0^3*f2^5+4*c0^2*c1*f0^4*f1+2*c0^2*c1*f0^3*f1^2+2*c0^2*c1*f0^2*f1^3+4*c0^2*c1*f0*f1^4+4*c0^2*c1*f1^4*f2+2*c0^2*c1*f1^3*f2^2+2*c0^2*c1*f1^2*f2^3+4*c0^2*c1*f1*f2^4+2*c0^2*c2*f0^4*f2+c0^2*c2*f0^3*f2^2+c0^2*c2*f0^2*f2^3+2*c0^2*c2*f0*f2^4+6*c0^2*c2*f1^5+4*c0*c1^2*f0^4*f1+4*c0*c1^2*f0^3*f1^2+4*c0*c1^2*f0^3*f1*f2+2*c0*c1^2*f0^2*f1^3+8*c0*c1^2*f0*f1^4+4*c0*c1^2*f0*f1^3*f2+4*c0*c1^2*f0*f1*f2^3+8*c0*c1^2*f1^4*f2+2*c0*c1^2*f1^3*f2^2+4*c0*c1^2*f1^2*f2^3+4*c0*c1^2*f1*f2^4+4*c0*c1*c2*f0^3*f1^2+8*c0*c1*c2*f0^3*f1*f2+8*c0*c1*c2*f0*f1^4+8*c0*c1*c2*f0*f1^3*f2+8*c0*c1*c2*f0*f1*f2^3+8*c0*c1*c2*f1^4*f2+4*c0*c1*c2*f1^2*f2^3+2*c0*c2^2*f0^4*f2+c0*c2^2*f0^3*f2^2+c0*c2^2*f0^2*f2^3+2*c0*c2^2*f0*f2^4+6*c0*c2^2*f1^5+2*c1^3*f0^5+4*c1^3*f0^4*f2+2*c1^3*f0^3*f2^2+2*c1^3*f0^2*f2^3+4*c1^3*f0*f2^4+16*c1^3*f1^5+2*c1^3*f2^5+4*c1^2*c2*f0^4*f1+4*c1^2*c2*f0^3*f1^2+4*c1^2*c2*f0^3*f1*f2+2*c1^2*c2*f0^2*f1^3+8*c1^2*c2*f0*f1^4+4*c1^2*c2*f0*f1^3*f2+4*c1^2*c2*f0*f1*f2^3+8*c1^2*c2*f1^4*f2+2*c1^2*c2*f1^3*f2^2+4*c1^2*c2*f1^2*f2^3+4*c1^2*c2*f1*f2^4+4*c1*c2^2*f0^4*f1+2*c1*c2^2*f0^3*f1^2+2*c1*c2^2*f0^2*f1^3+4*c1*c2^2*f0*f1^4+4*c1*c2^2*f1^4*f2+2*c1*c2^2*f1^3*f2^2+2*c1*c2^2*f1^2*f2^3+4*c1*c2^2*f1*f2^4+c2^3*f0^5+2*c2^3*f1^5+c2^3*f2^5, 6*c0^3*f0^4*f1+6*c0^3*f0*f1^4+6*c0^3*f1^4*f2+6*c0^3*f1*f2^4+30*c0^2*c1*f0^3*f1^2+24*c0^2*c1*f0^2*f1^3+6*c0^2*c1*f0^2*f1^2*f2+24*c0^2*c1*f0*f1^3*f2+6*c0^2*c1*f0*f1^2*f2^2+24*c0^2*c1*f1^3*f2^2+30*c0^2*c1*f1^2*f2^3+12*c0^2*c2*f0^3*f1*f2+12*c0^2*c2*f0^2*f1*f2^2+18*c0^2*c2*f0*f1^4+12*c0^2*c2*f0*f1*f2^3+18*c0^2*c2*f1^4*f2+30*c0*c1^2*f0^3*f1^2+48*c0*c1^2*f0^2*f1^3+42*c0*c1^2*f0^2*f1^2*f2+48*c0*c1^2*f0*f1^3*f2+42*c0*c1^2*f0*f1^2*f2^2+48*c0*c1^2*f1^3*f2^2+30*c0*c1^2*f1^2*f2^3+48*c0*c1*c2*f0^2*f1^3+72*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0*f1^3*f2+72*c0*c1*c2*f0*f1^2*f2^2+48*c0*c1*c2*f1^3*f2^2+12*c0*c2^2*f0^3*f1*f2+12*c0*c2^2*f0^2*f1*f2^2+18*c0*c2^2*f0*f1^4+12*c0*c2^2*f0*f1*f2^3+18*c0*c2^2*f1^4*f2+12*c1^3*f0^4*f1+24*c1^3*f0^3*f1*f2+24*c1^3*f0^2*f1*f2^2+48*c1^3*f0*f1^4+24*c1^3*f0*f1*f2^3+48*c1^3*f1^4*f2+12*c1^3*f1*f2^4+30*c1^2*c2*f0^3*f1^2+48*c1^2*c2*f0^2*f1^3+42*c1^2*c2*f0^2*f1^2*f2+48*c1^2*c2*f0*f1^3*f2+42*c1^2*c2*f0*f1^2*f2^2+48*c1^2*c2*f1^3*f2^2+30*c1^2*c2*f1^2*f2^3+30*c1*c2^2*f0^3*f1^2+24*c1*c2^2*f0^2*f1^3+6*c1*c2^2*f0^2*f1^2*f2+24*c1*c2^2*f0*f1^3*f2+6*c1*c2^2*f0*f1^2*f2^2+24*c1*c2^2*f1^3*f2^2+30*c1*c2^2*f1^2*f2^3+6*c2^3*f0^4*f1+6*c2^3*f0*f1^4+6*c2^3*f1^4*f2+6*c2^3*f1*f2^4, 3*c0^3*f0^4*f2+3*c0^3*f0*f2^4+6*c0^3*f1^5+12*c0^2*c1*f0^3*f1*f2+6*c0^2*c1*f0^2*f1^3+6*c0^2*c1*f0^2*f1^2*f2+12*c0^2*c1*f0*f1^4+6*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f0*f1*f2^3+12*c0^2*c1*f1^4*f2+6*c0^2*c1*f1^3*f2^2+9*c0^2*c2*f0^3*f2^2+9*c0^2*c2*f0^2*f2^3+18*c0^2*c2*f1^5+12*c0*c1^2*f0^3*f1*f2+6*c0*c1^2*f0^2*f1^3+12*c0*c1^2*f0^2*f1^2*f2+24*c0*c1^2*f0^2*f1*f2^2+24*c0*c1^2*f0*f1^4+12*c0*c1^2*f0*f1^3*f2+12*c0*c1^2*f0*f1^2*f2^2+12*c0*c1^2*f0*f1*f2^3+24*c0*c1^2*f1^4*f2+6*c0*c1^2*f1^3*f2^2+12*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0^2*f1*f2^2+24*c0*c1*c2*f0*f1^4+24*c0*c1*c2*f0*f1^3*f2+12*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f1^4*f2+9*c0*c2^2*f0^3*f2^2+9*c0*c2^2*f0^2*f2^3+18*c0*c2^2*f1^5+6*c1^3*f0^4*f2+18*c1^3*f0^3*f2^2+18*c1^3*f0^2*f2^3+6*c1^3*f0*f2^4+48*c1^3*f1^5+12*c1^2*c2*f0^3*f1*f2+6*c1^2*c2*f0^2*f1^3+12*c1^2*c2*f0^2*f1^2*f2+24*c1^2*c2*f0^2*f1*f2^2+24*c1^2*c2*f0*f1^4+12*c1^2*c2*f0*f1^3*f2+12*c1^2*c2*f0*f1^2*f2^2+12*c1^2*c2*f0*f1*f2^3+24*c1^2*c2*f1^4*f2+6*c1^2*c2*f1^3*f2^2+12*c1*c2^2*f0^3*f1*f2+6*c1*c2^2*f0^2*f1^3+6*c1*c2^2*f0^2*f1^2*f2+12*c1*c2^2*f0*f1^4+6*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f0*f1*f2^3+12*c1*c2^2*f1^4*f2+6*c1*c2^2*f1^3*f2^2+3*c2^3*f0^4*f2+3*c2^3*f0*f2^4+6*c2^3*f1^5, 6*c0^3*f0^3*f1^2+6*c0^3*f0^2*f1^3+6*c0^3*f1^3*f2^2+6*c0^3*f1^2*f2^3+6*c0^2*c1*f0^4*f1+12*c0^2*c1*f0^3*f1^2+24*c0^2*c1*f0^2*f1^3+12*c0^2*c1*f0^2*f1^2*f2+12*c0^2*c1*f0^2*f1*f2^2+12*c0^2*c1*f0*f1^4+12*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f1^4*f2+24*c0^2*c1*f1^3*f2^2+12*c0^2*c1*f1^2*f2^3+6*c0^2*c1*f1*f2^4+18*c0^2*c2*f0^2*f1^3+18*c0^2*c2*f0^2*f1^2*f2+18*c0^2*c2*f0*f1^2*f2^2+18*c0^2*c2*f1^3*f2^2+6*c0*c1^2*f0^4*f1+24*c0*c1^2*f0^3*f1^2+12*c0*c1^2*f0^3*f1*f2+24*c0*c1^2*f0^2*f1^3+24*c0*c1^2*f0^2*f1^2*f2+12*c0*c1^2*f0^2*f1*f2^2+24*c0*c1^2*f0*f1^4+48*c0*c1^2*f0*f1^3*f2+24*c0*c1^2*f0*f1^2*f2^2+12*c0*c1^2*f0*f1*f2^3+24*c0*c1^2*f1^4*f2+24*c0*c1^2*f1^3*f2^2+24*c0*c1^2*f1^2*f2^3+6*c0*c1^2*f1*f2^4+24*c0*c1*c2*f0^3*f1^2+24*c0*c1*c2*f0^3*f1*f2+24*c0*c1*c2*f0^2*f1^2*f2+24*c0*c1*c2*f0*f1^4+96*c0*c1*c2*f0*f1^3*f2+24*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f0*f1*f2^3+24*c0*c1*c2*f1^4*f2+24*c0*c1*c2*f1^2*f2^3+18*c0*c2^2*f0^2*f1^3+18*c0*c2^2*f0^2*f1^2*f2+18*c0*c2^2*f0*f1^2*f2^2+18*c0*c2^2*f1^3*f2^2+12*c1^3*f0^3*f1^2+48*c1^3*f0^2*f1^3+36*c1^3*f0^2*f1^2*f2+36*c1^3*f0*f1^2*f2^2+48*c1^3*f1^3*f2^2+12*c1^3*f1^2*f2^3+6*c1^2*c2*f0^4*f1+24*c1^2*c2*f0^3*f1^2+12*c1^2*c2*f0^3*f1*f2+24*c1^2*c2*f0^2*f1^3+24*c1^2*c2*f0^2*f1^2*f2+12*c1^2*c2*f0^2*f1*f2^2+24*c1^2*c2*f0*f1^4+48*c1^2*c2*f0*f1^3*f2+24*c1^2*c2*f0*f1^2*f2^2+12*c1^2*c2*f0*f1*f2^3+24*c1^2*c2*f1^4*f2+24*c1^2*c2*f1^3*f2^2+24*c1^2*c2*f1^2*f2^3+6*c1^2*c2*f1*f2^4+6*c1*c2^2*f0^4*f1+12*c1*c2^2*f0^3*f1^2+24*c1*c2^2*f0^2*f1^3+12*c1*c2^2*f0^2*f1^2*f2+12*c1*c2^2*f0^2*f1*f2^2+12*c1*c2^2*f0*f1^4+12*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f1^4*f2+24*c1*c2^2*f1^3*f2^2+12*c1*c2^2*f1^2*f2^3+6*c1*c2^2*f1*f2^4+6*c2^3*f0^3*f1^2+6*c2^3*f0^2*f1^3+6*c2^3*f1^3*f2^2+6*c2^3*f1^2*f2^3, 12*c0^3*f0^3*f1*f2+12*c0^3*f0*f1^4+12*c0^3*f0*f1*f2^3+12*c0^3*f1^4*f2+12*c0^2*c1*f0^3*f1^2+24*c0^2*c1*f0^2*f1^3+60*c0^2*c1*f0^2*f1^2*f2+96*c0^2*c1*f0*f1^3*f2+60*c0^2*c1*f0*f1^2*f2^2+24*c0^2*c1*f1^3*f2^2+12*c0^2*c1*f1^2*f2^3+12*c0^2*c2*f0^3*f1*f2+48*c0^2*c2*f0^2*f1*f2^2+36*c0^2*c2*f0*f1^4+12*c0^2*c2*f0*f1*f2^3+36*c0^2*c2*f1^4*f2+12*c0*c1^2*f0^3*f1^2+48*c0*c1^2*f0^2*f1^3+132*c0*c1^2*f0^2*f1^2*f2+192*c0*c1^2*f0*f1^3*f2+132*c0*c1^2*f0*f1^2*f2^2+48*c0*c1^2*f1^3*f2^2+12*c0*c1^2*f1^2*f2^3+48*c0*c1*c2*f0^2*f1^3+144*c0*c1*c2*f0^2*f1^2*f2+192*c0*c1*c2*f0*f1^3*f2+144*c0*c1*c2*f0*f1^2*f2^2+48*c0*c1*c2*f1^3*f2^2+12*c0*c2^2*f0^3*f1*f2+48*c0*c2^2*f0^2*f1*f2^2+36*c0*c2^2*f0*f1^4+12*c0*c2^2*f0*f1*f2^3+36*c0*c2^2*f1^4*f2+48*c1^3*f0^3*f1*f2+96*c1^3*f0^2*f1*f2^2+96*c1^3*f0*f1^4+48*c1^3*f0*f1*f2^3+96*c1^3*f1^4*f2+12*c1^2*c2*f0^3*f1^2+48*c1^2*c2*f0^2*f1^3+132*c1^2*c2*f0^2*f1^2*f2+192*c1^2*c2*f0*f1^3*f2+132*c1^2*c2*f0*f1^2*f2^2+48*c1^2*c2*f1^3*f2^2+12*c1^2*c2*f1^2*f2^3+12*c1*c2^2*f0^3*f1^2+24*c1*c2^2*f0^2*f1^3+60*c1*c2^2*f0^2*f1^2*f2+96*c1*c2^2*f0*f1^3*f2+60*c1*c2^2*f0*f1^2*f2^2+24*c1*c2^2*f1^3*f2^2+12*c1*c2^2*f1^2*f2^3+12*c2^3*f0^3*f1*f2+12*c2^3*f0*f1^4+12*c2^3*f0*f1*f2^3+12*c2^3*f1^4*f2, 6*c0^3*f0^3*f1^2+12*c0^3*f0*f1^3*f2+6*c0^3*f1^2*f2^3+12*c0^2*c1*f0^3*f1*f2+24*c0^2*c1*f0^2*f1^3+24*c0^2*c1*f0^2*f1^2*f2+12*c0^2*c1*f0*f1^4+24*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f0*f1*f2^3+12*c0^2*c1*f1^4*f2+24*c0^2*c1*f1^3*f2^2+18*c0^2*c2*f0^2*f1^2*f2+36*c0^2*c2*f0*f1^3*f2+18*c0^2*c2*f0*f1^2*f2^2+12*c0*c1^2*f0^3*f1*f2+24*c0*c1^2*f0^2*f1^3+48*c0*c1^2*f0^2*f1^2*f2+24*c0*c1^2*f0^2*f1*f2^2+24*c0*c1^2*f0*f1^4+48*c0*c1^2*f0*f1^3*f2+48*c0*c1^2*f0*f1^2*f2^2+12*c0*c1^2*f0*f1*f2^3+24*c0*c1^2*f1^4*f2+24*c0*c1^2*f1^3*f2^2+48*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0^2*f1*f2^2+24*c0*c1*c2*f0*f1^4+96*c0*c1*c2*f0*f1^3*f2+48*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f1^4*f2+18*c0*c2^2*f0^2*f1^2*f2+36*c0*c2^2*f0*f1^3*f2+18*c0*c2^2*f0*f1^2*f2^2+12*c1^3*f0^3*f1^2+36*c1^3*f0^2*f1^2*f2+96*c1^3*f0*f1^3*f2+36*c1^3*f0*f1^2*f2^2+12*c1^3*f1^2*f2^3+12*c1^2*c2*f0^3*f1*f2+24*c1^2*c2*f0^2*f1^3+48*c1^2*c2*f0^2*f1^2*f2+24*c1^2*c2*f0^2*f1*f2^2+24*c1^2*c2*f0*f1^4+48*c1^2*c2*f0*f1^3*f2+48*c1^2*c2*f0*f1^2*f2^2+12*c1^2*c2*f0*f1*f2^3+24*c1^2*c2*f1^4*f2+24*c1^2*c2*f1^3*f2^2+12*c1*c2^2*f0^3*f1*f2+24*c1*c2^2*f0^2*f1^3+24*c1*c2^2*f0^2*f1^2*f2+12*c1*c2^2*f0*f1^4+24*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f0*f1*f2^3+12*c1*c2^2*f1^4*f2+24*c1*c2^2*f1^3*f2^2+6*c2^3*f0^3*f1^2+12*c2^3*f0*f1^3*f2+6*c2^3*f1^2*f2^3, 3*c0^3*f0^3*f2^2+3*c0^3*f0^2*f2^3+6*c0^3*f1^5+6*c0^2*c1*f0^2*f1^3+6*c0^2*c1*f0^2*f1^2*f2+24*c0^2*c1*f0^2*f1*f2^2+12*c0^2*c1*f0*f1^4+6*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f1^4*f2+6*c0^2*c1*f1^3*f2^2+3*c0^2*c2*f0^4*f2+6*c0^2*c2*f0^3*f2^2+6*c0^2*c2*f0^2*f2^3+3*c0^2*c2*f0*f2^4+18*c0^2*c2*f1^5+12*c0*c1^2*f0^3*f1*f2+6*c0*c1^2*f0^2*f1^3+12*c0*c1^2*f0^2*f1^2*f2+24*c0*c1^2*f0^2*f1*f2^2+24*c0*c1^2*f0*f1^4+12*c0*c1^2*f0*f1^3*f2+12*c0*c1^2*f0*f1^2*f2^2+12*c0*c1^2*f0*f1*f2^3+24*c0*c1^2*f1^4*f2+6*c0*c1^2*f1^3*f2^2+24*c0*c1*c2*f0^3*f1*f2+12*c0*c1*c2*f0^2*f1^2*f2+24*c0*c1*c2*f0*f1^4+24*c0*c1*c2*f0*f1^3*f2+12*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f0*f1*f2^3+24*c0*c1*c2*f1^4*f2+3*c0*c2^2*f0^4*f2+6*c0*c2^2*f0^3*f2^2+6*c0*c2^2*f0^2*f2^3+3*c0*c2^2*f0*f2^4+18*c0*c2^2*f1^5+6*c1^3*f0^4*f2+18*c1^3*f0^3*f2^2+18*c1^3*f0^2*f2^3+6*c1^3*f0*f2^4+48*c1^3*f1^5+12*c1^2*c2*f0^3*f1*f2+6*c1^2*c2*f0^2*f1^3+12*c1^2*c2*f0^2*f1^2*f2+24*c1^2*c2*f0^2*f1*f2^2+24*c1^2*c2*f0*f1^4+12*c1^2*c2*f0*f1^3*f2+12*c1^2*c2*f0*f1^2*f2^2+12*c1^2*c2*f0*f1*f2^3+24*c1^2*c2*f1^4*f2+6*c1^2*c2*f1^3*f2^2+6*c1*c2^2*f0^2*f1^3+6*c1*c2^2*f0^2*f1^2*f2+24*c1*c2^2*f0^2*f1*f2^2+12*c1*c2^2*f0*f1^4+6*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f1^4*f2+6*c1*c2^2*f1^3*f2^2+3*c2^3*f0^3*f2^2+3*c2^3*f0^2*f2^3+6*c2^3*f1^5, 2*c0^3*f0^3*f1^2+2*c0^3*f0^2*f1^3+2*c0^3*f1^3*f2^2+2*c0^3*f1^2*f2^3+2*c0^2*c1*f0^5+4*c0^2*c1*f0^4*f1+4*c0^2*c1*f0^3*f1*f2+2*c0^2*c1*f0^3*f2^2+2*c0^2*c1*f0^2*f2^3+8*c0^2*c1*f0*f1^4+4*c0^2*c1*f0*f1*f2^3+8*c0^2*c1*f1^5+8*c0^2*c1*f1^4*f2+4*c0^2*c1*f1*f2^4+2*c0^2*c1*f2^5+6*c0^2*c2*f0^3*f1^2+2*c0^2*c2*f0^2*f1^3+8*c0^2*c2*f0*f1^3*f2+2*c0^2*c2*f1^3*f2^2+6*c0^2*c2*f1^2*f2^3+2*c0*c1^2*f0^5+8*c0*c1^2*f0^4*f1+4*c0*c1^2*f0^4*f2+8*c0*c1^2*f0^3*f1*f2+2*c0*c1^2*f0^3*f2^2+2*c0*c1^2*f0^2*f2^3+16*c0*c1^2*f0*f1^4+8*c0*c1^2*f0*f1*f2^3+4*c0*c1^2*f0*f2^4+16*c0*c1^2*f1^5+16*c0*c1^2*f1^4*f2+8*c0*c1^2*f1*f2^4+2*c0*c1^2*f2^5+8*c0*c1*c2*f0^4*f1+8*c0*c1*c2*f0^4*f2+8*c0*c1*c2*f0^3*f1*f2+16*c0*c1*c2*f0*f1^4+8*c0*c1*c2*f0*f1*f2^3+8*c0*c1*c2*f0*f2^4+16*c0*c1*c2*f1^5+16*c0*c1*c2*f1^4*f2+8*c0*c1*c2*f1*f2^4+6*c0*c2^2*f0^3*f1^2+2*c0*c2^2*f0^2*f1^3+8*c0*c2^2*f0*f1^3*f2+2*c0*c2^2*f1^3*f2^2+6*c0*c2^2*f1^2*f2^3+16*c1^3*f0^3*f1^2+8*c1^3*f0^2*f1^3+16*c1^3*f0*f1^3*f2+8*c1^3*f1^3*f2^2+16*c1^3*f1^2*f2^3+2*c1^2*c2*f0^5+8*c1^2*c2*f0^4*f1+4*c1^2*c2*f0^4*f2+8*c1^2*c2*f0^3*f1*f2+2*c1^2*c2*f0^3*f2^2+2*c1^2*c2*f0^2*f2^3+16*c1^2*c2*f0*f1^4+8*c1^2*c2*f0*f1*f2^3+4*c1^2*c2*f0*f2^4+16*c1^2*c2*f1^5+16*c1^2*c2*f1^4*f2+8*c1^2*c2*f1*f2^4+2*c1^2*c2*f2^5+2*c1*c2^2*f0^5+4*c1*c2^2*f0^4*f1+4*c1*c2^2*f0^3*f1*f2+2*c1*c2^2*f0^3*f2^2+2*c1*c2^2*f0^2*f2^3+8*c1*c2^2*f0*f1^4+4*c1*c2^2*f0*f1*f2^3+8*c1*c2^2*f1^5+8*c1*c2^2*f1^4*f2+4*c1*c2^2*f1*f2^4+2*c1*c2^2*f2^5+2*c2^3*f0^3*f1^2+2*c2^3*f0^2*f1^3+2*c2^3*f1^3*f2^2+2*c2^3*f1^2*f2^3, 6*c0^3*f0^2*f1^3+6*c0^3*f0^2*f1^2*f2+6*c0^3*f0*f1^2*f2^2+6*c0^3*f1^3*f2^2+6*c0^2*c1*f0^4*f1+12*c0^2*c1*f0^3*f1^2+12*c0^2*c1*f0^2*f1^2*f2+12*c0^2*c1*f0^2*f1*f2^2+12*c0^2*c1*f0*f1^4+48*c0^2*c1*f0*f1^3*f2+12*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f1^4*f2+12*c0^2*c1*f1^2*f2^3+6*c0^2*c1*f1*f2^4+6*c0^2*c2*f0^3*f1^2+18*c0^2*c2*f0^2*f1^3+12*c0^2*c2*f0^2*f1^2*f2+12*c0^2*c2*f0*f1^2*f2^2+18*c0^2*c2*f1^3*f2^2+6*c0^2*c2*f1^2*f2^3+6*c0*c1^2*f0^4*f1+24*c0*c1^2*f0^3*f1^2+12*c0*c1^2*f0^3*f1*f2+24*c0*c1^2*f0^2*f1^3+24*c0*c1^2*f0^2*f1^2*f2+12*c0*c1^2*f0^2*f1*f2^2+24*c0*c1^2*f0*f1^4+48*c0*c1^2*f0*f1^3*f2+24*c0*c1^2*f0*f1^2*f2^2+12*c0*c1^2*f0*f1*f2^3+24*c0*c1^2*f1^4*f2+24*c0*c1^2*f1^3*f2^2+24*c0*c1^2*f1^2*f2^3+6*c0*c1^2*f1*f2^4+24*c0*c1*c2*f0^3*f1^2+24*c0*c1*c2*f0^3*f1*f2+48*c0*c1*c2*f0^2*f1^3+24*c0*c1*c2*f0^2*f1^2*f2+24*c0*c1*c2*f0*f1^4+24*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f0*f1*f2^3+24*c0*c1*c2*f1^4*f2+48*c0*c1*c2*f1^3*f2^2+24*c0*c1*c2*f1^2*f2^3+6*c0*c2^2*f0^3*f1^2+18*c0*c2^2*f0^2*f1^3+12*c0*c2^2*f0^2*f1^2*f2+12*c0*c2^2*f0*f1^2*f2^2+18*c0*c2^2*f1^3*f2^2+6*c0*c2^2*f1^2*f2^3+12*c1^3*f0^3*f1^2+48*c1^3*f0^2*f1^3+36*c1^3*f0^2*f1^2*f2+36*c1^3*f0*f1^2*f2^2+48*c1^3*f1^3*f2^2+12*c1^3*f1^2*f2^3+6*c1^2*c2*f0^4*f1+24*c1^2*c2*f0^3*f1^2+12*c1^2*c2*f0^3*f1*f2+24*c1^2*c2*f0^2*f1^3+24*c1^2*c2*f0^2*f1^2*f2+12*c1^2*c2*f0^2*f1*f2^2+24*c1^2*c2*f0*f1^4+48*c1^2*c2*f0*f1^3*f2+24*c1^2*c2*f0*f1^2*f2^2+12*c1^2*c2*f0*f1*f2^3+24*c1^2*c2*f1^4*f2+24*c1^2*c2*f1^3*f2^2+24*c1^2*c2*f1^2*f2^3+6*c1^2*c2*f1*f2^4+6*c1*c2^2*f0^4*f1+12*c1*c2^2*f0^3*f1^2+12*c1*c2^2*f0^2*f1^2*f2+12*c1*c2^2*f0^2*f1*f2^2+12*c1*c2^2*f0*f1^4+48*c1*c2^2*f0*f1^3*f2+12*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f1^4*f2+12*c1*c2^2*f1^2*f2^3+6*c1*c2^2*f1*f2^4+6*c2^3*f0^2*f1^3+6*c2^3*f0^2*f1^2*f2+6*c2^3*f0*f1^2*f2^2+6*c2^3*f1^3*f2^2, 6*c0^3*f0^2*f1^3+6*c0^3*f0^2*f1^2*f2+6*c0^3*f0*f1^2*f2^2+6*c0^3*f1^3*f2^2+6*c0^2*c1*f0^4*f2+12*c0^2*c1*f0^3*f1*f2+6*c0^2*c1*f0^3*f2^2+24*c0^2*c1*f0^2*f1*f2^2+6*c0^2*c1*f0^2*f2^3+24*c0^2*c1*f0*f1^4+12*c0^2*c1*f0*f1*f2^3+6*c0^2*c1*f0*f2^4+24*c0^2*c1*f1^5+24*c0^2*c1*f1^4*f2+6*c0^2*c2*f0^2*f1^3+18*c0^2*c2*f0^2*f1^2*f2+24*c0^2*c2*f0*f1^3*f2+18*c0^2*c2*f0*f1^2*f2^2+6*c0^2*c2*f1^3*f2^2+6*c0*c1^2*f0^4*f2+24*c0*c1^2*f0^3*f1*f2+18*c0*c1^2*f0^3*f2^2+48*c0*c1^2*f0^2*f1*f2^2+18*c0*c1^2*f0^2*f2^3+48*c0*c1^2*f0*f1^4+24*c0*c1^2*f0*f1*f2^3+6*c0*c1^2*f0*f2^4+48*c0*c1^2*f1^5+48*c0*c1^2*f1^4*f2+24*c0*c1*c2*f0^3*f1*f2+24*c0*c1*c2*f0^3*f2^2+48*c0*c1*c2*f0^2*f1*f2^2+24*c0*c1*c2*f0^2*f2^3+48*c0*c1*c2*f0*f1^4+24*c0*c1*c2*f0*f1*f2^3+48*c0*c1*c2*f1^5+48*c0*c1*c2*f1^4*f2+6*c0*c2^2*f0^2*f1^3+18*c0*c2^2*f0^2*f1^2*f2+24*c0*c2^2*f0*f1^3*f2+18*c0*c2^2*f0*f1^2*f2^2+6*c0*c2^2*f1^3*f2^2+24*c1^3*f0^2*f1^3+48*c1^3*f0^2*f1^2*f2+48*c1^3*f0*f1^3*f2+48*c1^3*f0*f1^2*f2^2+24*c1^3*f1^3*f2^2+6*c1^2*c2*f0^4*f2+24*c1^2*c2*f0^3*f1*f2+18*c1^2*c2*f0^3*f2^2+48*c1^2*c2*f0^2*f1*f2^2+18*c1^2*c2*f0^2*f2^3+48*c1^2*c2*f0*f1^4+24*c1^2*c2*f0*f1*f2^3+6*c1^2*c2*f0*f2^4+48*c1^2*c2*f1^5+48*c1^2*c2*f1^4*f2+6*c1*c2^2*f0^4*f2+12*c1*c2^2*f0^3*f1*f2+6*c1*c2^2*f0^3*f2^2+24*c1*c2^2*f0^2*f1*f2^2+6*c1*c2^2*f0^2*f2^3+24*c1*c2^2*f0*f1^4+12*c1*c2^2*f0*f1*f2^3+6*c1*c2^2*f0*f2^4+24*c1*c2^2*f1^5+24*c1*c2^2*f1^4*f2+6*c2^3*f0^2*f1^3+6*c2^3*f0^2*f1^2*f2+6*c2^3*f0*f1^2*f2^2+6*c2^3*f1^3*f2^2, 12*c0^3*f0^2*f1*f2^2+6*c0^3*f0*f1^4+6*c0^3*f1^4*f2+6*c0^2*c1*f0^3*f1^2+24*c0^2*c1*f0^2*f1^3+30*c0^2*c1*f0^2*f1^2*f2+24*c0^2*c1*f0*f1^3*f2+30*c0^2*c1*f0*f1^2*f2^2+24*c0^2*c1*f1^3*f2^2+6*c0^2*c1*f1^2*f2^3+6*c0^2*c2*f0^4*f1+12*c0^2*c2*f0^3*f1*f2+18*c0^2*c2*f0*f1^4+12*c0^2*c2*f0*f1*f2^3+18*c0^2*c2*f1^4*f2+6*c0^2*c2*f1*f2^4+30*c0*c1^2*f0^3*f1^2+48*c0*c1^2*f0^2*f1^3+42*c0*c1^2*f0^2*f1^2*f2+48*c0*c1^2*f0*f1^3*f2+42*c0*c1^2*f0*f1^2*f2^2+48*c0*c1^2*f1^3*f2^2+30*c0*c1^2*f1^2*f2^3+48*c0*c1*c2*f0^3*f1^2+48*c0*c1*c2*f0^2*f1^3+24*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0*f1^3*f2+24*c0*c1*c2*f0*f1^2*f2^2+48*c0*c1*c2*f1^3*f2^2+48*c0*c1*c2*f1^2*f2^3+6*c0*c2^2*f0^4*f1+12*c0*c2^2*f0^3*f1*f2+18*c0*c2^2*f0*f1^4+12*c0*c2^2*f0*f1*f2^3+18*c0*c2^2*f1^4*f2+6*c0*c2^2*f1*f2^4+12*c1^3*f0^4*f1+24*c1^3*f0^3*f1*f2+24*c1^3*f0^2*f1*f2^2+48*c1^3*f0*f1^4+24*c1^3*f0*f1*f2^3+48*c1^3*f1^4*f2+12*c1^3*f1*f2^4+30*c1^2*c2*f0^3*f1^2+48*c1^2*c2*f0^2*f1^3+42*c1^2*c2*f0^2*f1^2*f2+48*c1^2*c2*f0*f1^3*f2+42*c1^2*c2*f0*f1^2*f2^2+48*c1^2*c2*f1^3*f2^2+30*c1^2*c2*f1^2*f2^3+6*c1*c2^2*f0^3*f1^2+24*c1*c2^2*f0^2*f1^3+30*c1*c2^2*f0^2*f1^2*f2+24*c1*c2^2*f0*f1^3*f2+30*c1*c2^2*f0*f1^2*f2^2+24*c1*c2^2*f1^3*f2^2+6*c1*c2^2*f1^2*f2^3+12*c2^3*f0^2*f1*f2^2+6*c2^3*f0*f1^4+6*c2^3*f1^4*f2, 6*c0^3*f0^2*f1^2*f2+12*c0^3*f0*f1^3*f2+6*c0^3*f0*f1^2*f2^2+12*c0^2*c1*f0^3*f1*f2+24*c0^2*c1*f0^2*f1^2*f2+12*c0^2*c1*f0*f1^4+48*c0^2*c1*f0*f1^3*f2+24*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f0*f1*f2^3+12*c0^2*c1*f1^4*f2+6*c0^2*c2*f0^3*f1^2+12*c0^2*c2*f0^2*f1^2*f2+36*c0^2*c2*f0*f1^3*f2+12*c0^2*c2*f0*f1^2*f2^2+6*c0^2*c2*f1^2*f2^3+12*c0*c1^2*f0^3*f1*f2+24*c0*c1^2*f0^2*f1^3+48*c0*c1^2*f0^2*f1^2*f2+24*c0*c1^2*f0^2*f1*f2^2+24*c0*c1^2*f0*f1^4+48*c0*c1^2*f0*f1^3*f2+48*c0*c1^2*f0*f1^2*f2^2+12*c0*c1^2*f0*f1*f2^3+24*c0*c1^2*f1^4*f2+24*c0*c1^2*f1^3*f2^2+48*c0*c1*c2*f0^2*f1^3+48*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0^2*f1*f2^2+24*c0*c1*c2*f0*f1^4+48*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f1^4*f2+48*c0*c1*c2*f1^3*f2^2+6*c0*c2^2*f0^3*f1^2+12*c0*c2^2*f0^2*f1^2*f2+36*c0*c2^2*f0*f1^3*f2+12*c0*c2^2*f0*f1^2*f2^2+6*c0*c2^2*f1^2*f2^3+12*c1^3*f0^3*f1^2+36*c1^3*f0^2*f1^2*f2+96*c1^3*f0*f1^3*f2+36*c1^3*f0*f1^2*f2^2+12*c1^3*f1^2*f2^3+12*c1^2*c2*f0^3*f1*f2+24*c1^2*c2*f0^2*f1^3+48*c1^2*c2*f0^2*f1^2*f2+24*c1^2*c2*f0^2*f1*f2^2+24*c1^2*c2*f0*f1^4+48*c1^2*c2*f0*f1^3*f2+48*c1^2*c2*f0*f1^2*f2^2+12*c1^2*c2*f0*f1*f2^3+24*c1^2*c2*f1^4*f2+24*c1^2*c2*f1^3*f2^2+12*c1*c2^2*f0^3*f1*f2+24*c1*c2^2*f0^2*f1^2*f2+12*c1*c2^2*f0*f1^4+48*c1*c2^2*f0*f1^3*f2+24*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f0*f1*f2^3+12*c1*c2^2*f1^4*f2+6*c2^3*f0^2*f1^2*f2+12*c2^3*f0*f1^3*f2+6*c2^3*f0*f1^2*f2^2, c0^3*f0^3*f2^2+c0^3*f0^2*f2^3+2*c0^3*f1^5+2*c0^2*c1*f0^3*f1^2+4*c0^2*c1*f0^3*f1*f2+2*c0^2*c1*f0^2*f1^3+4*c0^2*c1*f0*f1^4+4*c0^2*c1*f0*f1*f2^3+4*c0^2*c1*f1^4*f2+2*c0^2*c1*f1^3*f2^2+2*c0^2*c1*f1^2*f2^3+c0^2*c2*f0^5+2*c0^2*c2*f0^4*f2+2*c0^2*c2*f0*f2^4+6*c0^2*c2*f1^5+c0^2*c2*f2^5+4*c0*c1^2*f0^4*f1+4*c0*c1^2*f0^3*f1^2+4*c0*c1^2*f0^3*f1*f2+2*c0*c1^2*f0^2*f1^3+8*c0*c1^2*f0*f1^4+4*c0*c1^2*f0*f1^3*f2+4*c0*c1^2*f0*f1*f2^3+8*c0*c1^2*f1^4*f2+2*c0*c1^2*f1^3*f2^2+4*c0*c1^2*f1^2*f2^3+4*c0*c1^2*f1*f2^4+8*c0*c1*c2*f0^4*f1+4*c0*c1*c2*f0^3*f1^2+8*c0*c1*c2*f0*f1^4+8*c0*c1*c2*f0*f1^3*f2+8*c0*c1*c2*f1^4*f2+4*c0*c1*c2*f1^2*f2^3+8*c0*c1*c2*f1*f2^4+c0*c2^2*f0^5+2*c0*c2^2*f0^4*f2+2*c0*c2^2*f0*f2^4+6*c0*c2^2*f1^5+c0*c2^2*f2^5+2*c1^3*f0^5+4*c1^3*f0^4*f2+2*c1^3*f0^3*f2^2+2*c1^3*f0^2*f2^3+4*c1^3*f0*f2^4+16*c1^3*f1^5+2*c1^3*f2^5+4*c1^2*c2*f0^4*f1+4*c1^2*c2*f0^3*f1^2+4*c1^2*c2*f0^3*f1*f2+2*c1^2*c2*f0^2*f1^3+8*c1^2*c2*f0*f1^4+4*c1^2*c2*f0*f1^3*f2+4*c1^2*c2*f0*f1*f2^3+8*c1^2*c2*f1^4*f2+2*c1^2*c2*f1^3*f2^2+4*c1^2*c2*f1^2*f2^3+4*c1^2*c2*f1*f2^4+2*c1*c2^2*f0^3*f1^2+4*c1*c2^2*f0^3*f1*f2+2*c1*c2^2*f0^2*f1^3+4*c1*c2^2*f0*f1^4+4*c1*c2^2*f0*f1*f2^3+4*c1*c2^2*f1^4*f2+2*c1*c2^2*f1^3*f2^2+2*c1*c2^2*f1^2*f2^3+c2^3*f0^3*f2^2+c2^3*f0^2*f2^3+2*c2^3*f1^5, 4*c0^3*f0^4*f1+4*c0^3*f0*f1^4+4*c0^3*f1^4*f2+4*c0^3*f1*f2^4+4*c0^2*c1*f0^5+4*c0^2*c1*f0^4*f1+4*c0^2*c1*f0^4*f2+8*c0^2*c1*f0^3*f1^2+4*c0^2*c1*f0^3*f1*f2+4*c0^2*c1*f0^2*f1^3+8*c0^2*c1*f0*f1^4+8*c0^2*c1*f0*f1^3*f2+4*c0^2*c1*f0*f1*f2^3+4*c0^2*c1*f0*f2^4+16*c0^2*c1*f1^5+8*c0^2*c1*f1^4*f2+4*c0^2*c1*f1^3*f2^2+8*c0^2*c1*f1^2*f2^3+4*c0^2*c1*f1*f2^4+4*c0^2*c1*f2^5+4*c0^2*c2*f0^4*f1+8*c0^2*c2*f0^3*f1*f2+12*c0^2*c2*f0*f1^4+8*c0^2*c2*f0*f1*f2^3+12*c0^2*c2*f1^4*f2+4*c0^2*c2*f1*f2^4+4*c0*c1^2*f0^5+8*c0*c1^2*f0^4*f1+8*c0*c1^2*f0^4*f2+16*c0*c1^2*f0^3*f1^2+8*c0*c1^2*f0^3*f1*f2+4*c0*c1^2*f0^3*f2^2+8*c0*c1^2*f0^2*f1^3+4*c0*c1^2*f0^2*f2^3+16*c0*c1^2*f0*f1^4+16*c0*c1^2*f0*f1^3*f2+8*c0*c1^2*f0*f1*f2^3+8*c0*c1^2*f0*f2^4+32*c0*c1^2*f1^5+16*c0*c1^2*f1^4*f2+8*c0*c1^2*f1^3*f2^2+16*c0*c1^2*f1^2*f2^3+8*c0*c1^2*f1*f2^4+4*c0*c1^2*f2^5+8*c0*c1*c2*f0^4*f1+8*c0*c1*c2*f0^4*f2+16*c0*c1*c2*f0^3*f1^2+8*c0*c1*c2*f0^3*f1*f2+8*c0*c1*c2*f0^3*f2^2+8*c0*c1*c2*f0^2*f1^3+8*c0*c1*c2*f0^2*f2^3+16*c0*c1*c2*f0*f1^4+16*c0*c1*c2*f0*f1^3*f2+8*c0*c1*c2*f0*f1*f2^3+8*c0*c1*c2*f0*f2^4+32*c0*c1*c2*f1^5+16*c0*c1*c2*f1^4*f2+8*c0*c1*c2*f1^3*f2^2+16*c0*c1*c2*f1^2*f2^3+8*c0*c1*c2*f1*f2^4+4*c0*c2^2*f0^4*f1+8*c0*c2^2*f0^3*f1*f2+12*c0*c2^2*f0*f1^4+8*c0*c2^2*f0*f1*f2^3+12*c0*c2^2*f1^4*f2+4*c0*c2^2*f1*f2^4+16*c1^3*f0^4*f1+16*c1^3*f0^3*f1*f2+32*c1^3*f0*f1^4+16*c1^3*f0*f1*f2^3+32*c1^3*f1^4*f2+16*c1^3*f1*f2^4+4*c1^2*c2*f0^5+8*c1^2*c2*f0^4*f1+8*c1^2*c2*f0^4*f2+16*c1^2*c2*f0^3*f1^2+8*c1^2*c2*f0^3*f1*f2+4*c1^2*c2*f0^3*f2^2+8*c1^2*c2*f0^2*f1^3+4*c1^2*c2*f0^2*f2^3+16*c1^2*c2*f0*f1^4+16*c1^2*c2*f0*f1^3*f2+8*c1^2*c2*f0*f1*f2^3+8*c1^2*c2*f0*f2^4+32*c1^2*c2*f1^5+16*c1^2*c2*f1^4*f2+8*c1^2*c2*f1^3*f2^2+16*c1^2*c2*f1^2*f2^3+8*c1^2*c2*f1*f2^4+4*c1^2*c2*f2^5+4*c1*c2^2*f0^5+4*c1*c2^2*f0^4*f1+4*c1*c2^2*f0^4*f2+8*c1*c2^2*f0^3*f1^2+4*c1*c2^2*f0^3*f1*f2+4*c1*c2^2*f0^2*f1^3+8*c1*c2^2*f0*f1^4+8*c1*c2^2*f0*f1^3*f2+4*c1*c2^2*f0*f1*f2^3+4*c1*c2^2*f0*f2^4+16*c1*c2^2*f1^5+8*c1*c2^2*f1^4*f2+4*c1*c2^2*f1^3*f2^2+8*c1*c2^2*f1^2*f2^3+4*c1*c2^2*f1*f2^4+4*c1*c2^2*f2^5+4*c2^3*f0^4*f1+4*c2^3*f0*f1^4+4*c2^3*f1^4*f2+4*c2^3*f1*f2^4, 12*c0^3*f0^3*f1^2+12*c0^3*f0^2*f1^3+12*c0^3*f1^3*f2^2+12*c0^3*f1^2*f2^3+12*c0^2*c1*f0^4*f1+24*c0^2*c1*f0^3*f1^2+12*c0^2*c1*f0^3*f1*f2+36*c0^2*c1*f0^2*f1^3+24*c0^2*c1*f0^2*f1^2*f2+24*c0^2*c1*f0*f1^4+24*c0^2*c1*f0*f1^3*f2+24*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f0*f1*f2^3+24*c0^2*c1*f1^4*f2+36*c0^2*c1*f1^3*f2^2+24*c0^2*c1*f1^2*f2^3+12*c0^2*c1*f1*f2^4+12*c0^2*c2*f0^3*f1^2+12*c0^2*c2*f0^2*f1^3+24*c0^2*c2*f0^2*f1^2*f2+48*c0^2*c2*f0*f1^3*f2+24*c0^2*c2*f0*f1^2*f2^2+12*c0^2*c2*f1^3*f2^2+12*c0^2*c2*f1^2*f2^3+12*c0*c1^2*f0^4*f1+36*c0*c1^2*f0^3*f1^2+24*c0*c1^2*f0^3*f1*f2+72*c0*c1^2*f0^2*f1^3+60*c0*c1^2*f0^2*f1^2*f2+24*c0*c1^2*f0^2*f1*f2^2+48*c0*c1^2*f0*f1^4+48*c0*c1^2*f0*f1^3*f2+60*c0*c1^2*f0*f1^2*f2^2+24*c0*c1^2*f0*f1*f2^3+48*c0*c1^2*f1^4*f2+72*c0*c1^2*f1^3*f2^2+36*c0*c1^2*f1^2*f2^3+12*c0*c1^2*f1*f2^4+24*c0*c1*c2*f0^3*f1^2+24*c0*c1*c2*f0^3*f1*f2+72*c0*c1*c2*f0^2*f1^3+72*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0^2*f1*f2^2+48*c0*c1*c2*f0*f1^4+48*c0*c1*c2*f0*f1^3*f2+72*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f0*f1*f2^3+48*c0*c1*c2*f1^4*f2+72*c0*c1*c2*f1^3*f2^2+24*c0*c1*c2*f1^2*f2^3+12*c0*c2^2*f0^3*f1^2+12*c0*c2^2*f0^2*f1^3+24*c0*c2^2*f0^2*f1^2*f2+48*c0*c2^2*f0*f1^3*f2+24*c0*c2^2*f0*f1^2*f2^2+12*c0*c2^2*f1^3*f2^2+12*c0*c2^2*f1^2*f2^3+48*c1^3*f0^3*f1^2+48*c1^3*f0^2*f1^3+48*c1^3*f0^2*f1^2*f2+96*c1^3*f0*f1^3*f2+48*c1^3*f0*f1^2*f2^2+48*c1^3*f1^3*f2^2+48*c1^3*f1^2*f2^3+12*c1^2*c2*f0^4*f1+36*c1^2*c2*f0^3*f1^2+24*c1^2*c2*f0^3*f1*f2+72*c1^2*c2*f0^2*f1^3+60*c1^2*c2*f0^2*f1^2*f2+24*c1^2*c2*f0^2*f1*f2^2+48*c1^2*c2*f0*f1^4+48*c1^2*c2*f0*f1^3*f2+60*c1^2*c2*f0*f1^2*f2^2+24*c1^2*c2*f0*f1*f2^3+48*c1^2*c2*f1^4*f2+72*c1^2*c2*f1^3*f2^2+36*c1^2*c2*f1^2*f2^3+12*c1^2*c2*f1*f2^4+12*c1*c2^2*f0^4*f1+24*c1*c2^2*f0^3*f1^2+12*c1*c2^2*f0^3*f1*f2+36*c1*c2^2*f0^2*f1^3+24*c1*c2^2*f0^2*f1^2*f2+24*c1*c2^2*f0*f1^4+24*c1*c2^2*f0*f1^3*f2+24*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f0*f1*f2^3+24*c1*c2^2*f1^4*f2+36*c1*c2^2*f1^3*f2^2+24*c1*c2^2*f1^2*f2^3+12*c1*c2^2*f1*f2^4+12*c2^3*f0^3*f1^2+12*c2^3*f0^2*f1^3+12*c2^3*f1^3*f2^2+12*c2^3*f1^2*f2^3, 12*c0^3*f0^3*f1*f2+12*c0^3*f0*f1^4+12*c0^3*f0*f1*f2^3+12*c0^3*f1^4*f2+12*c0^2*c1*f0^4*f2+12*c0^2*c1*f0^3*f1*f2+12*c0^2*c1*f0^3*f2^2+12*c0^2*c1*f0^2*f1^3+24*c0^2*c1*f0^2*f1^2*f2+24*c0^2*c1*f0^2*f1*f2^2+12*c0^2*c1*f0^2*f2^3+24*c0^2*c1*f0*f1^4+24*c0^2*c1*f0*f1^3*f2+24*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f0*f1*f2^3+12*c0^2*c1*f0*f2^4+48*c0^2*c1*f1^5+24*c0^2*c1*f1^4*f2+12*c0^2*c1*f1^3*f2^2+12*c0^2*c2*f0^3*f1*f2+48*c0^2*c2*f0^2*f1*f2^2+36*c0^2*c2*f0*f1^4+12*c0^2*c2*f0*f1*f2^3+36*c0^2*c2*f1^4*f2+12*c0*c1^2*f0^4*f2+24*c0*c1^2*f0^3*f1*f2+36*c0*c1^2*f0^3*f2^2+24*c0*c1^2*f0^2*f1^3+48*c0*c1^2*f0^2*f1^2*f2+48*c0*c1^2*f0^2*f1*f2^2+36*c0*c1^2*f0^2*f2^3+48*c0*c1^2*f0*f1^4+48*c0*c1^2*f0*f1^3*f2+48*c0*c1^2*f0*f1^2*f2^2+24*c0*c1^2*f0*f1*f2^3+12*c0*c1^2*f0*f2^4+96*c0*c1^2*f1^5+48*c0*c1^2*f1^4*f2+24*c0*c1^2*f1^3*f2^2+24*c0*c1*c2*f0^3*f1*f2+48*c0*c1*c2*f0^3*f2^2+24*c0*c1*c2*f0^2*f1^3+48*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0^2*f1*f2^2+48*c0*c1*c2*f0^2*f2^3+48*c0*c1*c2*f0*f1^4+48*c0*c1*c2*f0*f1^3*f2+48*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f0*f1*f2^3+96*c0*c1*c2*f1^5+48*c0*c1*c2*f1^4*f2+24*c0*c1*c2*f1^3*f2^2+12*c0*c2^2*f0^3*f1*f2+48*c0*c2^2*f0^2*f1*f2^2+36*c0*c2^2*f0*f1^4+12*c0*c2^2*f0*f1*f2^3+36*c0*c2^2*f1^4*f2+48*c1^3*f0^3*f1*f2+96*c1^3*f0^2*f1*f2^2+96*c1^3*f0*f1^4+48*c1^3*f0*f1*f2^3+96*c1^3*f1^4*f2+12*c1^2*c2*f0^4*f2+24*c1^2*c2*f0^3*f1*f2+36*c1^2*c2*f0^3*f2^2+24*c1^2*c2*f0^2*f1^3+48*c1^2*c2*f0^2*f1^2*f2+48*c1^2*c2*f0^2*f1*f2^2+36*c1^2*c2*f0^2*f2^3+48*c1^2*c2*f0*f1^4+48*c1^2*c2*f0*f1^3*f2+48*c1^2*c2*f0*f1^2*f2^2+24*c1^2*c2*f0*f1*f2^3+12*c1^2*c2*f0*f2^4+96*c1^2*c2*f1^5+48*c1^2*c2*f1^4*f2+24*c1^2*c2*f1^3*f2^2+12*c1*c2^2*f0^4*f2+12*c1*c2^2*f0^3*f1*f2+12*c1*c2^2*f0^3*f2^2+12*c1*c2^2*f0^2*f1^3+24*c1*c2^2*f0^2*f1^2*f2+24*c1*c2^2*f0^2*f1*f2^2+12*c1*c2^2*f0^2*f2^3+24*c1*c2^2*f0*f1^4+24*c1*c2^2*f0*f1^3*f2+24*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f0*f1*f2^3+12*c1*c2^2*f0*f2^4+48*c1*c2^2*f1^5+24*c1*c2^2*f1^4*f2+12*c1*c2^2*f1^3*f2^2+12*c2^3*f0^3*f1*f2+12*c2^3*f0*f1^4+12*c2^3*f0*f1*f2^3+12*c2^3*f1^4*f2, 12*c0^3*f0^3*f1^2+24*c0^3*f0*f1^3*f2+12*c0^3*f1^2*f2^3+12*c0^2*c1*f0^4*f1+12*c0^2*c1*f0^3*f1^2+12*c0^2*c1*f0^3*f1*f2+36*c0^2*c1*f0^2*f1^3+36*c0^2*c1*f0^2*f1^2*f2+24*c0^2*c1*f0*f1^4+24*c0^2*c1*f0*f1^3*f2+36*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f0*f1*f2^3+24*c0^2*c1*f1^4*f2+36*c0^2*c1*f1^3*f2^2+12*c0^2*c1*f1^2*f2^3+12*c0^2*c1*f1*f2^4+12*c0^2*c2*f0^3*f1^2+24*c0^2*c2*f0^2*f1^3+24*c0^2*c2*f0^2*f1^2*f2+24*c0^2*c2*f0*f1^3*f2+24*c0^2*c2*f0*f1^2*f2^2+24*c0^2*c2*f1^3*f2^2+12*c0^2*c2*f1^2*f2^3+12*c0*c1^2*f0^4*f1+36*c0*c1^2*f0^3*f1^2+24*c0*c1^2*f0^3*f1*f2+72*c0*c1^2*f0^2*f1^3+60*c0*c1^2*f0^2*f1^2*f2+24*c0*c1^2*f0^2*f1*f2^2+48*c0*c1^2*f0*f1^4+48*c0*c1^2*f0*f1^3*f2+60*c0*c1^2*f0*f1^2*f2^2+24*c0*c1^2*f0*f1*f2^3+48*c0*c1^2*f1^4*f2+72*c0*c1^2*f1^3*f2^2+36*c0*c1^2*f1^2*f2^3+12*c0*c1^2*f1*f2^4+48*c0*c1*c2*f0^3*f1^2+24*c0*c1*c2*f0^3*f1*f2+72*c0*c1*c2*f0^2*f1^3+48*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0^2*f1*f2^2+48*c0*c1*c2*f0*f1^4+48*c0*c1*c2*f0*f1^3*f2+48*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f0*f1*f2^3+48*c0*c1*c2*f1^4*f2+72*c0*c1*c2*f1^3*f2^2+48*c0*c1*c2*f1^2*f2^3+12*c0*c2^2*f0^3*f1^2+24*c0*c2^2*f0^2*f1^3+24*c0*c2^2*f0^2*f1^2*f2+24*c0*c2^2*f0*f1^3*f2+24*c0*c2^2*f0*f1^2*f2^2+24*c0*c2^2*f1^3*f2^2+12*c0*c2^2*f1^2*f2^3+48*c1^3*f0^3*f1^2+48*c1^3*f0^2*f1^3+48*c1^3*f0^2*f1^2*f2+96*c1^3*f0*f1^3*f2+48*c1^3*f0*f1^2*f2^2+48*c1^3*f1^3*f2^2+48*c1^3*f1^2*f2^3+12*c1^2*c2*f0^4*f1+36*c1^2*c2*f0^3*f1^2+24*c1^2*c2*f0^3*f1*f2+72*c1^2*c2*f0^2*f1^3+60*c1^2*c2*f0^2*f1^2*f2+24*c1^2*c2*f0^2*f1*f2^2+48*c1^2*c2*f0*f1^4+48*c1^2*c2*f0*f1^3*f2+60*c1^2*c2*f0*f1^2*f2^2+24*c1^2*c2*f0*f1*f2^3+48*c1^2*c2*f1^4*f2+72*c1^2*c2*f1^3*f2^2+36*c1^2*c2*f1^2*f2^3+12*c1^2*c2*f1*f2^4+12*c1*c2^2*f0^4*f1+12*c1*c2^2*f0^3*f1^2+12*c1*c2^2*f0^3*f1*f2+36*c1*c2^2*f0^2*f1^3+36*c1*c2^2*f0^2*f1^2*f2+24*c1*c2^2*f0*f1^4+24*c1*c2^2*f0*f1^3*f2+36*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f0*f1*f2^3+24*c1*c2^2*f1^4*f2+36*c1*c2^2*f1^3*f2^2+12*c1*c2^2*f1^2*f2^3+12*c1*c2^2*f1*f2^4+12*c2^3*f0^3*f1^2+24*c2^3*f0*f1^3*f2+12*c2^3*f1^2*f2^3, 24*c0^3*f0^2*f1^3+24*c0^3*f0^2*f1^2*f2+24*c0^3*f0*f1^2*f2^2+24*c0^3*f1^3*f2^2+24*c0^2*c1*f0^3*f1^2+24*c0^2*c1*f0^3*f1*f2+24*c0^2*c1*f0^2*f1^3+72*c0^2*c1*f0^2*f1^2*f2+48*c0^2*c1*f0^2*f1*f2^2+48*c0^2*c1*f0*f1^4+144*c0^2*c1*f0*f1^3*f2+72*c0^2*c1*f0*f1^2*f2^2+24*c0^2*c1*f0*f1*f2^3+48*c0^2*c1*f1^4*f2+24*c0^2*c1*f1^3*f2^2+24*c0^2*c1*f1^2*f2^3+24*c0^2*c2*f0^2*f1^3+72*c0^2*c2*f0^2*f1^2*f2+96*c0^2*c2*f0*f1^3*f2+72*c0^2*c2*f0*f1^2*f2^2+24*c0^2*c2*f1^3*f2^2+24*c0*c1^2*f0^3*f1^2+48*c0*c1^2*f0^3*f1*f2+48*c0*c1^2*f0^2*f1^3+168*c0*c1^2*f0^2*f1^2*f2+96*c0*c1^2*f0^2*f1*f2^2+96*c0*c1^2*f0*f1^4+288*c0*c1^2*f0*f1^3*f2+168*c0*c1^2*f0*f1^2*f2^2+48*c0*c1^2*f0*f1*f2^3+96*c0*c1^2*f1^4*f2+48*c0*c1^2*f1^3*f2^2+24*c0*c1^2*f1^2*f2^3+48*c0*c1*c2*f0^3*f1*f2+48*c0*c1*c2*f0^2*f1^3+192*c0*c1*c2*f0^2*f1^2*f2+96*c0*c1*c2*f0^2*f1*f2^2+96*c0*c1*c2*f0*f1^4+288*c0*c1*c2*f0*f1^3*f2+192*c0*c1*c2*f0*f1^2*f2^2+48*c0*c1*c2*f0*f1*f2^3+96*c0*c1*c2*f1^4*f2+48*c0*c1*c2*f1^3*f2^2+24*c0*c2^2*f0^2*f1^3+72*c0*c2^2*f0^2*f1^2*f2+96*c0*c2^2*f0*f1^3*f2+72*c0*c2^2*f0*f1^2*f2^2+24*c0*c2^2*f1^3*f2^2+96*c1^3*f0^2*f1^3+192*c1^3*f0^2*f1^2*f2+192*c1^3*f0*f1^3*f2+192*c1^3*f0*f1^2*f2^2+96*c1^3*f1^3*f2^2+24*c1^2*c2*f0^3*f1^2+48*c1^2*c2*f0^3*f1*f2+48*c1^2*c2*f0^2*f1^3+168*c1^2*c2*f0^2*f1^2*f2+96*c1^2*c2*f0^2*f1*f2^2+96*c1^2*c2*f0*f1^4+288*c1^2*c2*f0*f1^3*f2+168*c1^2*c2*f0*f1^2*f2^2+48*c1^2*c2*f0*f1*f2^3+96*c1^2*c2*f1^4*f2+48*c1^2*c2*f1^3*f2^2+24*c1^2*c2*f1^2*f2^3+24*c1*c2^2*f0^3*f1^2+24*c1*c2^2*f0^3*f1*f2+24*c1*c2^2*f0^2*f1^3+72*c1*c2^2*f0^2*f1^2*f2+48*c1*c2^2*f0^2*f1*f2^2+48*c1*c2^2*f0*f1^4+144*c1*c2^2*f0*f1^3*f2+72*c1*c2^2*f0*f1^2*f2^2+24*c1*c2^2*f0*f1*f2^3+48*c1*c2^2*f1^4*f2+24*c1*c2^2*f1^3*f2^2+24*c1*c2^2*f1^2*f2^3+24*c2^3*f0^2*f1^3+24*c2^3*f0^2*f1^2*f2+24*c2^3*f0*f1^2*f2^2+24*c2^3*f1^3*f2^2, 24*c0^3*f0^2*f1*f2^2+12*c0^3*f0*f1^4+12*c0^3*f1^4*f2+12*c0^2*c1*f0^3*f1*f2+24*c0^2*c1*f0^3*f2^2+12*c0^2*c1*f0^2*f1^3+24*c0^2*c1*f0^2*f1^2*f2+24*c0^2*c1*f0^2*f1*f2^2+24*c0^2*c1*f0^2*f2^3+24*c0^2*c1*f0*f1^4+24*c0^2*c1*f0*f1^3*f2+24*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f0*f1*f2^3+48*c0^2*c1*f1^5+24*c0^2*c1*f1^4*f2+12*c0^2*c1*f1^3*f2^2+24*c0^2*c2*f0^3*f1*f2+24*c0^2*c2*f0^2*f1*f2^2+36*c0^2*c2*f0*f1^4+24*c0^2*c2*f0*f1*f2^3+36*c0^2*c2*f1^4*f2+12*c0*c1^2*f0^4*f2+24*c0*c1^2*f0^3*f1*f2+36*c0*c1^2*f0^3*f2^2+24*c0*c1^2*f0^2*f1^3+48*c0*c1^2*f0^2*f1^2*f2+48*c0*c1^2*f0^2*f1*f2^2+36*c0*c1^2*f0^2*f2^3+48*c0*c1^2*f0*f1^4+48*c0*c1^2*f0*f1^3*f2+48*c0*c1^2*f0*f1^2*f2^2+24*c0*c1^2*f0*f1*f2^3+12*c0*c1^2*f0*f2^4+96*c0*c1^2*f1^5+48*c0*c1^2*f1^4*f2+24*c0*c1^2*f1^3*f2^2+24*c0*c1*c2*f0^4*f2+24*c0*c1*c2*f0^3*f1*f2+24*c0*c1*c2*f0^3*f2^2+24*c0*c1*c2*f0^2*f1^3+48*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0^2*f1*f2^2+24*c0*c1*c2*f0^2*f2^3+48*c0*c1*c2*f0*f1^4+48*c0*c1*c2*f0*f1^3*f2+48*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f0*f1*f2^3+24*c0*c1*c2*f0*f2^4+96*c0*c1*c2*f1^5+48*c0*c1*c2*f1^4*f2+24*c0*c1*c2*f1^3*f2^2+24*c0*c2^2*f0^3*f1*f2+24*c0*c2^2*f0^2*f1*f2^2+36*c0*c2^2*f0*f1^4+24*c0*c2^2*f0*f1*f2^3+36*c0*c2^2*f1^4*f2+48*c1^3*f0^3*f1*f2+96*c1^3*f0^2*f1*f2^2+96*c1^3*f0*f1^4+48*c1^3*f0*f1*f2^3+96*c1^3*f1^4*f2+12*c1^2*c2*f0^4*f2+24*c1^2*c2*f0^3*f1*f2+36*c1^2*c2*f0^3*f2^2+24*c1^2*c2*f0^2*f1^3+48*c1^2*c2*f0^2*f1^2*f2+48*c1^2*c2*f0^2*f1*f2^2+36*c1^2*c2*f0^2*f2^3+48*c1^2*c2*f0*f1^4+48*c1^2*c2*f0*f1^3*f2+48*c1^2*c2*f0*f1^2*f2^2+24*c1^2*c2*f0*f1*f2^3+12*c1^2*c2*f0*f2^4+96*c1^2*c2*f1^5+48*c1^2*c2*f1^4*f2+24*c1^2*c2*f1^3*f2^2+12*c1*c2^2*f0^3*f1*f2+24*c1*c2^2*f0^3*f2^2+12*c1*c2^2*f0^2*f1^3+24*c1*c2^2*f0^2*f1^2*f2+24*c1*c2^2*f0^2*f1*f2^2+24*c1*c2^2*f0^2*f2^3+24*c1*c2^2*f0*f1^4+24*c1*c2^2*f0*f1^3*f2+24*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f0*f1*f2^3+48*c1*c2^2*f1^5+24*c1*c2^2*f1^4*f2+12*c1*c2^2*f1^3*f2^2+24*c2^3*f0^2*f1*f2^2+12*c2^3*f0*f1^4+12*c2^3*f1^4*f2, 24*c0^3*f0^2*f1^2*f2+48*c0^3*f0*f1^3*f2+24*c0^3*f0*f1^2*f2^2+24*c0^2*c1*f0^3*f1*f2+24*c0^2*c1*f0^2*f1^3+96*c0^2*c1*f0^2*f1^2*f2+48*c0^2*c1*f0^2*f1*f2^2+48*c0^2*c1*f0*f1^4+144*c0^2*c1*f0*f1^3*f2+96*c0^2*c1*f0*f1^2*f2^2+24*c0^2*c1*f0*f1*f2^3+48*c0^2*c1*f1^4*f2+24*c0^2*c1*f1^3*f2^2+48*c0^2*c2*f0^2*f1^3+72*c0^2*c2*f0^2*f1^2*f2+48*c0^2*c2*f0*f1^3*f2+72*c0^2*c2*f0*f1^2*f2^2+48*c0^2*c2*f1^3*f2^2+24*c0*c1^2*f0^3*f1^2+48*c0*c1^2*f0^3*f1*f2+48*c0*c1^2*f0^2*f1^3+168*c0*c1^2*f0^2*f1^2*f2+96*c0*c1^2*f0^2*f1*f2^2+96*c0*c1^2*f0*f1^4+288*c0*c1^2*f0*f1^3*f2+168*c0*c1^2*f0*f1^2*f2^2+48*c0*c1^2*f0*f1*f2^3+96*c0*c1^2*f1^4*f2+48*c0*c1^2*f1^3*f2^2+24*c0*c1^2*f1^2*f2^3+48*c0*c1*c2*f0^3*f1^2+48*c0*c1*c2*f0^3*f1*f2+48*c0*c1*c2*f0^2*f1^3+144*c0*c1*c2*f0^2*f1^2*f2+96*c0*c1*c2*f0^2*f1*f2^2+96*c0*c1*c2*f0*f1^4+288*c0*c1*c2*f0*f1^3*f2+144*c0*c1*c2*f0*f1^2*f2^2+48*c0*c1*c2*f0*f1*f2^3+96*c0*c1*c2*f1^4*f2+48*c0*c1*c2*f1^3*f2^2+48*c0*c1*c2*f1^2*f2^3+48*c0*c2^2*f0^2*f1^3+72*c0*c2^2*f0^2*f1^2*f2+48*c0*c2^2*f0*f1^3*f2+72*c0*c2^2*f0*f1^2*f2^2+48*c0*c2^2*f1^3*f2^2+96*c1^3*f0^2*f1^3+192*c1^3*f0^2*f1^2*f2+192*c1^3*f0*f1^3*f2+192*c1^3*f0*f1^2*f2^2+96*c1^3*f1^3*f2^2+24*c1^2*c2*f0^3*f1^2+48*c1^2*c2*f0^3*f1*f2+48*c1^2*c2*f0^2*f1^3+168*c1^2*c2*f0^2*f1^2*f2+96*c1^2*c2*f0^2*f1*f2^2+96*c1^2*c2*f0*f1^4+288*c1^2*c2*f0*f1^3*f2+168*c1^2*c2*f0*f1^2*f2^2+48*c1^2*c2*f0*f1*f2^3+96*c1^2*c2*f1^4*f2+48*c1^2*c2*f1^3*f2^2+24*c1^2*c2*f1^2*f2^3+24*c1*c2^2*f0^3*f1*f2+24*c1*c2^2*f0^2*f1^3+96*c1*c2^2*f0^2*f1^2*f2+48*c1*c2^2*f0^2*f1*f2^2+48*c1*c2^2*f0*f1^4+144*c1*c2^2*f0*f1^3*f2+96*c1*c2^2*f0*f1^2*f2^2+24*c1*c2^2*f0*f1*f2^3+48*c1*c2^2*f1^4*f2+24*c1*c2^2*f1^3*f2^2+24*c2^3*f0^2*f1^2*f2+48*c2^3*f0*f1^3*f2+24*c2^3*f0*f1^2*f2^2, 12*c0^3*f0^2*f1^3+12*c0^3*f0^2*f1^2*f2+12*c0^3*f0*f1^2*f2^2+12*c0^3*f1^3*f2^2+24*c0^2*c1*f0^3*f1^2+12*c0^2*c1*f0^3*f1*f2+36*c0^2*c1*f0^2*f1^3+24*c0^2*c1*f0^2*f1^2*f2+24*c0^2*c1*f0^2*f1*f2^2+24*c0^2*c1*f0*f1^4+24*c0^2*c1*f0*f1^3*f2+24*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f0*f1*f2^3+24*c0^2*c1*f1^4*f2+36*c0^2*c1*f1^3*f2^2+24*c0^2*c1*f1^2*f2^3+24*c0^2*c2*f0^3*f1^2+12*c0^2*c2*f0^2*f1^3+12*c0^2*c2*f0^2*f1^2*f2+48*c0^2*c2*f0*f1^3*f2+12*c0^2*c2*f0*f1^2*f2^2+12*c0^2*c2*f1^3*f2^2+24*c0^2*c2*f1^2*f2^3+12*c0*c1^2*f0^4*f1+36*c0*c1^2*f0^3*f1^2+24*c0*c1^2*f0^3*f1*f2+72*c0*c1^2*f0^2*f1^3+60*c0*c1^2*f0^2*f1^2*f2+24*c0*c1^2*f0^2*f1*f2^2+48*c0*c1^2*f0*f1^4+48*c0*c1^2*f0*f1^3*f2+60*c0*c1^2*f0*f1^2*f2^2+24*c0*c1^2*f0*f1*f2^3+48*c0*c1^2*f1^4*f2+72*c0*c1^2*f1^3*f2^2+36*c0*c1^2*f1^2*f2^3+12*c0*c1^2*f1*f2^4+24*c0*c1*c2*f0^4*f1+24*c0*c1*c2*f0^3*f1^2+24*c0*c1*c2*f0^3*f1*f2+72*c0*c1*c2*f0^2*f1^3+72*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0*f1^4+48*c0*c1*c2*f0*f1^3*f2+72*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f0*f1*f2^3+48*c0*c1*c2*f1^4*f2+72*c0*c1*c2*f1^3*f2^2+24*c0*c1*c2*f1^2*f2^3+24*c0*c1*c2*f1*f2^4+24*c0*c2^2*f0^3*f1^2+12*c0*c2^2*f0^2*f1^3+12*c0*c2^2*f0^2*f1^2*f2+48*c0*c2^2*f0*f1^3*f2+12*c0*c2^2*f0*f1^2*f2^2+12*c0*c2^2*f1^3*f2^2+24*c0*c2^2*f1^2*f2^3+48*c1^3*f0^3*f1^2+48*c1^3*f0^2*f1^3+48*c1^3*f0^2*f1^2*f2+96*c1^3*f0*f1^3*f2+48*c1^3*f0*f1^2*f2^2+48*c1^3*f1^3*f2^2+48*c1^3*f1^2*f2^3+12*c1^2*c2*f0^4*f1+36*c1^2*c2*f0^3*f1^2+24*c1^2*c2*f0^3*f1*f2+72*c1^2*c2*f0^2*f1^3+60*c1^2*c2*f0^2*f1^2*f2+24*c1^2*c2*f0^2*f1*f2^2+48*c1^2*c2*f0*f1^4+48*c1^2*c2*f0*f1^3*f2+60*c1^2*c2*f0*f1^2*f2^2+24*c1^2*c2*f0*f1*f2^3+48*c1^2*c2*f1^4*f2+72*c1^2*c2*f1^3*f2^2+36*c1^2*c2*f1^2*f2^3+12*c1^2*c2*f1*f2^4+24*c1*c2^2*f0^3*f1^2+12*c1*c2^2*f0^3*f1*f2+36*c1*c2^2*f0^2*f1^3+24*c1*c2^2*f0^2*f1^2*f2+24*c1*c2^2*f0^2*f1*f2^2+24*c1*c2^2*f0*f1^4+24*c1*c2^2*f0*f1^3*f2+24*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f0*f1*f2^3+24*c1*c2^2*f1^4*f2+36*c1*c2^2*f1^3*f2^2+24*c1*c2^2*f1^2*f2^3+12*c2^3*f0^2*f1^3+12*c2^3*f0^2*f1^2*f2+12*c2^3*f0*f1^2*f2^2+12*c2^3*f1^3*f2^2, 4*c0^3*f0^3*f1*f2+4*c0^3*f0*f1^4+4*c0^3*f0*f1*f2^3+4*c0^3*f1^4*f2+4*c0^2*c1*f0^4*f1+4*c0^2*c1*f0^4*f2+8*c0^2*c1*f0^3*f1^2+4*c0^2*c1*f0^3*f1*f2+4*c0^2*c1*f0^3*f2^2+4*c0^2*c1*f0^2*f1^3+4*c0^2*c1*f0^2*f2^3+8*c0^2*c1*f0*f1^4+8*c0^2*c1*f0*f1^3*f2+4*c0^2*c1*f0*f1*f2^3+4*c0^2*c1*f0*f2^4+16*c0^2*c1*f1^5+8*c0^2*c1*f1^4*f2+4*c0^2*c1*f1^3*f2^2+8*c0^2*c1*f1^2*f2^3+4*c0^2*c1*f1*f2^4+8*c0^2*c2*f0^4*f1+4*c0^2*c2*f0^3*f1*f2+12*c0^2*c2*f0*f1^4+4*c0^2*c2*f0*f1*f2^3+12*c0^2*c2*f1^4*f2+8*c0^2*c2*f1*f2^4+4*c0*c1^2*f0^5+8*c0*c1^2*f0^4*f1+8*c0*c1^2*f0^4*f2+16*c0*c1^2*f0^3*f1^2+8*c0*c1^2*f0^3*f1*f2+4*c0*c1^2*f0^3*f2^2+8*c0*c1^2*f0^2*f1^3+4*c0*c1^2*f0^2*f2^3+16*c0*c1^2*f0*f1^4+16*c0*c1^2*f0*f1^3*f2+8*c0*c1^2*f0*f1*f2^3+8*c0*c1^2*f0*f2^4+32*c0*c1^2*f1^5+16*c0*c1^2*f1^4*f2+8*c0*c1^2*f1^3*f2^2+16*c0*c1^2*f1^2*f2^3+8*c0*c1^2*f1*f2^4+4*c0*c1^2*f2^5+8*c0*c1*c2*f0^5+8*c0*c1*c2*f0^4*f1+8*c0*c1*c2*f0^4*f2+16*c0*c1*c2*f0^3*f1^2+8*c0*c1*c2*f0^3*f1*f2+8*c0*c1*c2*f0^2*f1^3+16*c0*c1*c2*f0*f1^4+16*c0*c1*c2*f0*f1^3*f2+8*c0*c1*c2*f0*f1*f2^3+8*c0*c1*c2*f0*f2^4+32*c0*c1*c2*f1^5+16*c0*c1*c2*f1^4*f2+8*c0*c1*c2*f1^3*f2^2+16*c0*c1*c2*f1^2*f2^3+8*c0*c1*c2*f1*f2^4+8*c0*c1*c2*f2^5+8*c0*c2^2*f0^4*f1+4*c0*c2^2*f0^3*f1*f2+12*c0*c2^2*f0*f1^4+4*c0*c2^2*f0*f1*f2^3+12*c0*c2^2*f1^4*f2+8*c0*c2^2*f1*f2^4+16*c1^3*f0^4*f1+16*c1^3*f0^3*f1*f2+32*c1^3*f0*f1^4+16*c1^3*f0*f1*f2^3+32*c1^3*f1^4*f2+16*c1^3*f1*f2^4+4*c1^2*c2*f0^5+8*c1^2*c2*f0^4*f1+8*c1^2*c2*f0^4*f2+16*c1^2*c2*f0^3*f1^2+8*c1^2*c2*f0^3*f1*f2+4*c1^2*c2*f0^3*f2^2+8*c1^2*c2*f0^2*f1^3+4*c1^2*c2*f0^2*f2^3+16*c1^2*c2*f0*f1^4+16*c1^2*c2*f0*f1^3*f2+8*c1^2*c2*f0*f1*f2^3+8*c1^2*c2*f0*f2^4+32*c1^2*c2*f1^5+16*c1^2*c2*f1^4*f2+8*c1^2*c2*f1^3*f2^2+16*c1^2*c2*f1^2*f2^3+8*c1^2*c2*f1*f2^4+4*c1^2*c2*f2^5+4*c1*c2^2*f0^4*f1+4*c1*c2^2*f0^4*f2+8*c1*c2^2*f0^3*f1^2+4*c1*c2^2*f0^3*f1*f2+4*c1*c2^2*f0^3*f2^2+4*c1*c2^2*f0^2*f1^3+4*c1*c2^2*f0^2*f2^3+8*c1*c2^2*f0*f1^4+8*c1*c2^2*f0*f1^3*f2+4*c1*c2^2*f0*f1*f2^3+4*c1*c2^2*f0*f2^4+16*c1*c2^2*f1^5+8*c1*c2^2*f1^4*f2+4*c1*c2^2*f1^3*f2^2+8*c1*c2^2*f1^2*f2^3+4*c1*c2^2*f1*f2^4+4*c2^3*f0^3*f1*f2+4*c2^3*f0*f1^4+4*c2^3*f0*f1*f2^3+4*c2^3*f1^4*f2, 12*c0^3*f0^2*f1^2*f2+24*c0^3*f0*f1^3*f2+12*c0^3*f0*f1^2*f2^2+12*c0^2*c1*f0^3*f1^2+12*c0^2*c1*f0^3*f1*f2+36*c0^2*c1*f0^2*f1^3+36*c0^2*c1*f0^2*f1^2*f2+24*c0^2*c1*f0^2*f1*f2^2+24*c0^2*c1*f0*f1^4+24*c0^2*c1*f0*f1^3*f2+36*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f0*f1*f2^3+24*c0^2*c1*f1^4*f2+36*c0^2*c1*f1^3*f2^2+12*c0^2*c1*f1^2*f2^3+24*c0^2*c2*f0^3*f1^2+24*c0^2*c2*f0^2*f1^3+12*c0^2*c2*f0^2*f1^2*f2+24*c0^2*c2*f0*f1^3*f2+12*c0^2*c2*f0*f1^2*f2^2+24*c0^2*c2*f1^3*f2^2+24*c0^2*c2*f1^2*f2^3+12*c0*c1^2*f0^4*f1+36*c0*c1^2*f0^3*f1^2+24*c0*c1^2*f0^3*f1*f2+72*c0*c1^2*f0^2*f1^3+60*c0*c1^2*f0^2*f1^2*f2+24*c0*c1^2*f0^2*f1*f2^2+48*c0*c1^2*f0*f1^4+48*c0*c1^2*f0*f1^3*f2+60*c0*c1^2*f0*f1^2*f2^2+24*c0*c1^2*f0*f1*f2^3+48*c0*c1^2*f1^4*f2+72*c0*c1^2*f1^3*f2^2+36*c0*c1^2*f1^2*f2^3+12*c0*c1^2*f1*f2^4+24*c0*c1*c2*f0^4*f1+48*c0*c1*c2*f0^3*f1^2+24*c0*c1*c2*f0^3*f1*f2+72*c0*c1*c2*f0^2*f1^3+48*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0*f1^4+48*c0*c1*c2*f0*f1^3*f2+48*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f0*f1*f2^3+48*c0*c1*c2*f1^4*f2+72*c0*c1*c2*f1^3*f2^2+48*c0*c1*c2*f1^2*f2^3+24*c0*c1*c2*f1*f2^4+24*c0*c2^2*f0^3*f1^2+24*c0*c2^2*f0^2*f1^3+12*c0*c2^2*f0^2*f1^2*f2+24*c0*c2^2*f0*f1^3*f2+12*c0*c2^2*f0*f1^2*f2^2+24*c0*c2^2*f1^3*f2^2+24*c0*c2^2*f1^2*f2^3+48*c1^3*f0^3*f1^2+48*c1^3*f0^2*f1^3+48*c1^3*f0^2*f1^2*f2+96*c1^3*f0*f1^3*f2+48*c1^3*f0*f1^2*f2^2+48*c1^3*f1^3*f2^2+48*c1^3*f1^2*f2^3+12*c1^2*c2*f0^4*f1+36*c1^2*c2*f0^3*f1^2+24*c1^2*c2*f0^3*f1*f2+72*c1^2*c2*f0^2*f1^3+60*c1^2*c2*f0^2*f1^2*f2+24*c1^2*c2*f0^2*f1*f2^2+48*c1^2*c2*f0*f1^4+48*c1^2*c2*f0*f1^3*f2+60*c1^2*c2*f0*f1^2*f2^2+24*c1^2*c2*f0*f1*f2^3+48*c1^2*c2*f1^4*f2+72*c1^2*c2*f1^3*f2^2+36*c1^2*c2*f1^2*f2^3+12*c1^2*c2*f1*f2^4+12*c1*c2^2*f0^3*f1^2+12*c1*c2^2*f0^3*f1*f2+36*c1*c2^2*f0^2*f1^3+36*c1*c2^2*f0^2*f1^2*f2+24*c1*c2^2*f0^2*f1*f2^2+24*c1*c2^2*f0*f1^4+24*c1*c2^2*f0*f1^3*f2+36*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f0*f1*f2^3+24*c1*c2^2*f1^4*f2+36*c1*c2^2*f1^3*f2^2+12*c1*c2^2*f1^2*f2^3+12*c2^3*f0^2*f1^2*f2+24*c2^3*f0*f1^3*f2+12*c2^3*f0*f1^2*f2^2, 2*c0^3*f0^4*f2+2*c0^3*f0*f2^4+4*c0^3*f1^5+4*c0^2*c1*f0^4*f1+4*c0^2*c1*f0^3*f1^2+4*c0^2*c1*f0^3*f1*f2+8*c0^2*c1*f0*f1^4+8*c0^2*c1*f0*f1^3*f2+4*c0^2*c1*f0*f1*f2^3+8*c0^2*c1*f1^4*f2+4*c0^2*c1*f1^2*f2^3+4*c0^2*c1*f1*f2^4+2*c0^2*c2*f0^5+2*c0^2*c2*f0^4*f2+2*c0^2*c2*f0^3*f2^2+2*c0^2*c2*f0^2*f2^3+2*c0^2*c2*f0*f2^4+12*c0^2*c2*f1^5+2*c0^2*c2*f2^5+8*c0*c1^2*f0^4*f1+8*c0*c1^2*f0^3*f1^2+8*c0*c1^2*f0^3*f1*f2+4*c0*c1^2*f0^2*f1^3+16*c0*c1^2*f0*f1^4+8*c0*c1^2*f0*f1^3*f2+8*c0*c1^2*f0*f1*f2^3+16*c0*c1^2*f1^4*f2+4*c0*c1^2*f1^3*f2^2+8*c0*c1^2*f1^2*f2^3+8*c0*c1^2*f1*f2^4+8*c0*c1*c2*f0^4*f1+8*c0*c1*c2*f0^3*f1^2+8*c0*c1*c2*f0^3*f1*f2+8*c0*c1*c2*f0^2*f1^3+16*c0*c1*c2*f0*f1^4+8*c0*c1*c2*f0*f1*f2^3+16*c0*c1*c2*f1^4*f2+8*c0*c1*c2*f1^3*f2^2+8*c0*c1*c2*f1^2*f2^3+8*c0*c1*c2*f1*f2^4+2*c0*c2^2*f0^5+2*c0*c2^2*f0^4*f2+2*c0*c2^2*f0^3*f2^2+2*c0*c2^2*f0^2*f2^3+2*c0*c2^2*f0*f2^4+12*c0*c2^2*f1^5+2*c0*c2^2*f2^5+4*c1^3*f0^5+8*c1^3*f0^4*f2+4*c1^3*f0^3*f2^2+4*c1^3*f0^2*f2^3+8*c1^3*f0*f2^4+32*c1^3*f1^5+4*c1^3*f2^5+8*c1^2*c2*f0^4*f1+8*c1^2*c2*f0^3*f1^2+8*c1^2*c2*f0^3*f1*f2+4*c1^2*c2*f0^2*f1^3+16*c1^2*c2*f0*f1^4+8*c1^2*c2*f0*f1^3*f2+8*c1^2*c2*f0*f1*f2^3+16*c1^2*c2*f1^4*f2+4*c1^2*c2*f1^3*f2^2+8*c1^2*c2*f1^2*f2^3+8*c1^2*c2*f1*f2^4+4*c1*c2^2*f0^4*f1+4*c1*c2^2*f0^3*f1^2+4*c1*c2^2*f0^3*f1*f2+8*c1*c2^2*f0*f1^4+8*c1*c2^2*f0*f1^3*f2+4*c1*c2^2*f0*f1*f2^3+8*c1*c2^2*f1^4*f2+4*c1*c2^2*f1^2*f2^3+4*c1*c2^2*f1*f2^4+2*c2^3*f0^4*f2+2*c2^3*f0*f2^4+4*c2^3*f1^5, 12*c0^3*f0^3*f1*f2+12*c0^3*f0*f1^4+12*c0^3*f0*f1*f2^3+12*c0^3*f1^4*f2+24*c0^2*c1*f0^3*f1^2+48*c0^2*c1*f0^2*f1^3+48*c0^2*c1*f0^2*f1^2*f2+48*c0^2*c1*f0*f1^3*f2+48*c0^2*c1*f0*f1^2*f2^2+48*c0^2*c1*f1^3*f2^2+24*c0^2*c1*f1^2*f2^3+12*c0^2*c2*f0^4*f1+12*c0^2*c2*f0^3*f1*f2+24*c0^2*c2*f0^2*f1*f2^2+36*c0^2*c2*f0*f1^4+12*c0^2*c2*f0*f1*f2^3+36*c0^2*c2*f1^4*f2+12*c0^2*c2*f1*f2^4+60*c0*c1^2*f0^3*f1^2+96*c0*c1^2*f0^2*f1^3+84*c0*c1^2*f0^2*f1^2*f2+96*c0*c1^2*f0*f1^3*f2+84*c0*c1^2*f0*f1^2*f2^2+96*c0*c1^2*f1^3*f2^2+60*c0*c1^2*f1^2*f2^3+72*c0*c1*c2*f0^3*f1^2+96*c0*c1*c2*f0^2*f1^3+72*c0*c1*c2*f0^2*f1^2*f2+96*c0*c1*c2*f0*f1^3*f2+72*c0*c1*c2*f0*f1^2*f2^2+96*c0*c1*c2*f1^3*f2^2+72*c0*c1*c2*f1^2*f2^3+12*c0*c2^2*f0^4*f1+12*c0*c2^2*f0^3*f1*f2+24*c0*c2^2*f0^2*f1*f2^2+36*c0*c2^2*f0*f1^4+12*c0*c2^2*f0*f1*f2^3+36*c0*c2^2*f1^4*f2+12*c0*c2^2*f1*f2^4+24*c1^3*f0^4*f1+48*c1^3*f0^3*f1*f2+48*c1^3*f0^2*f1*f2^2+96*c1^3*f0*f1^4+48*c1^3*f0*f1*f2^3+96*c1^3*f1^4*f2+24*c1^3*f1*f2^4+60*c1^2*c2*f0^3*f1^2+96*c1^2*c2*f0^2*f1^3+84*c1^2*c2*f0^2*f1^2*f2+96*c1^2*c2*f0*f1^3*f2+84*c1^2*c2*f0*f1^2*f2^2+96*c1^2*c2*f1^3*f2^2+60*c1^2*c2*f1^2*f2^3+24*c1*c2^2*f0^3*f1^2+48*c1*c2^2*f0^2*f1^3+48*c1*c2^2*f0^2*f1^2*f2+48*c1*c2^2*f0*f1^3*f2+48*c1*c2^2*f0*f1^2*f2^2+48*c1*c2^2*f1^3*f2^2+24*c1*c2^2*f1^2*f2^3+12*c2^3*f0^3*f1*f2+12*c2^3*f0*f1^4+12*c2^3*f0*f1*f2^3+12*c2^3*f1^4*f2, 6*c0^3*f0^3*f2^2+6*c0^3*f0^2*f2^3+12*c0^3*f1^5+12*c0^2*c1*f0^3*f1*f2+12*c0^2*c1*f0^2*f1^2*f2+24*c0^2*c1*f0^2*f1*f2^2+24*c0^2*c1*f0*f1^4+24*c0^2*c1*f0*f1^3*f2+12*c0^2*c1*f0*f1^2*f2^2+12*c0^2*c1*f0*f1*f2^3+24*c0^2*c1*f1^4*f2+6*c0^2*c2*f0^4*f2+12*c0^2*c2*f0^3*f2^2+12*c0^2*c2*f0^2*f2^3+6*c0^2*c2*f0*f2^4+36*c0^2*c2*f1^5+24*c0*c1^2*f0^3*f1*f2+12*c0*c1^2*f0^2*f1^3+24*c0*c1^2*f0^2*f1^2*f2+48*c0*c1^2*f0^2*f1*f2^2+48*c0*c1^2*f0*f1^4+24*c0*c1^2*f0*f1^3*f2+24*c0*c1^2*f0*f1^2*f2^2+24*c0*c1^2*f0*f1*f2^3+48*c0*c1^2*f1^4*f2+12*c0*c1^2*f1^3*f2^2+24*c0*c1*c2*f0^3*f1*f2+24*c0*c1*c2*f0^2*f1^3+24*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0^2*f1*f2^2+48*c0*c1*c2*f0*f1^4+24*c0*c1*c2*f0*f1^2*f2^2+24*c0*c1*c2*f0*f1*f2^3+48*c0*c1*c2*f1^4*f2+24*c0*c1*c2*f1^3*f2^2+6*c0*c2^2*f0^4*f2+12*c0*c2^2*f0^3*f2^2+12*c0*c2^2*f0^2*f2^3+6*c0*c2^2*f0*f2^4+36*c0*c2^2*f1^5+12*c1^3*f0^4*f2+36*c1^3*f0^3*f2^2+36*c1^3*f0^2*f2^3+12*c1^3*f0*f2^4+96*c1^3*f1^5+24*c1^2*c2*f0^3*f1*f2+12*c1^2*c2*f0^2*f1^3+24*c1^2*c2*f0^2*f1^2*f2+48*c1^2*c2*f0^2*f1*f2^2+48*c1^2*c2*f0*f1^4+24*c1^2*c2*f0*f1^3*f2+24*c1^2*c2*f0*f1^2*f2^2+24*c1^2*c2*f0*f1*f2^3+48*c1^2*c2*f1^4*f2+12*c1^2*c2*f1^3*f2^2+12*c1*c2^2*f0^3*f1*f2+12*c1*c2^2*f0^2*f1^2*f2+24*c1*c2^2*f0^2*f1*f2^2+24*c1*c2^2*f0*f1^4+24*c1*c2^2*f0*f1^3*f2+12*c1*c2^2*f0*f1^2*f2^2+12*c1*c2^2*f0*f1*f2^3+24*c1*c2^2*f1^4*f2+6*c2^3*f0^3*f2^2+6*c2^3*f0^2*f2^3+12*c2^3*f1^5, 12*c0^3*f0^2*f1^3+12*c0^3*f0^2*f1^2*f2+12*c0^3*f0*f1^2*f2^2+12*c0^3*f1^3*f2^2+24*c0^2*c1*f0^3*f1^2+24*c0^2*c1*f0^3*f1*f2+24*c0^2*c1*f0^2*f1^3+24*c0^2*c1*f0^2*f1^2*f2+24*c0^2*c1*f0*f1^4+48*c0^2*c1*f0*f1^3*f2+24*c0^2*c1*f0*f1^2*f2^2+24*c0^2*c1*f0*f1*f2^3+24*c0^2*c1*f1^4*f2+24*c0^2*c1*f1^3*f2^2+24*c0^2*c1*f1^2*f2^3+12*c0^2*c2*f0^3*f1^2+36*c0^2*c2*f0^2*f1^3+24*c0^2*c2*f0^2*f1^2*f2+24*c0^2*c2*f0*f1^2*f2^2+36*c0^2*c2*f1^3*f2^2+12*c0^2*c2*f1^2*f2^3+12*c0*c1^2*f0^4*f1+48*c0*c1^2*f0^3*f1^2+24*c0*c1^2*f0^3*f1*f2+48*c0*c1^2*f0^2*f1^3+48*c0*c1^2*f0^2*f1^2*f2+24*c0*c1^2*f0^2*f1*f2^2+48*c0*c1^2*f0*f1^4+96*c0*c1^2*f0*f1^3*f2+48*c0*c1^2*f0*f1^2*f2^2+24*c0*c1^2*f0*f1*f2^3+48*c0*c1^2*f1^4*f2+48*c0*c1^2*f1^3*f2^2+48*c0*c1^2*f1^2*f2^3+12*c0*c1^2*f1*f2^4+24*c0*c1*c2*f0^4*f1+48*c0*c1*c2*f0^3*f1^2+48*c0*c1*c2*f0^2*f1^3+48*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0^2*f1*f2^2+48*c0*c1*c2*f0*f1^4+96*c0*c1*c2*f0*f1^3*f2+48*c0*c1*c2*f0*f1^2*f2^2+48*c0*c1*c2*f1^4*f2+48*c0*c1*c2*f1^3*f2^2+48*c0*c1*c2*f1^2*f2^3+24*c0*c1*c2*f1*f2^4+12*c0*c2^2*f0^3*f1^2+36*c0*c2^2*f0^2*f1^3+24*c0*c2^2*f0^2*f1^2*f2+24*c0*c2^2*f0*f1^2*f2^2+36*c0*c2^2*f1^3*f2^2+12*c0*c2^2*f1^2*f2^3+24*c1^3*f0^3*f1^2+96*c1^3*f0^2*f1^3+72*c1^3*f0^2*f1^2*f2+72*c1^3*f0*f1^2*f2^2+96*c1^3*f1^3*f2^2+24*c1^3*f1^2*f2^3+12*c1^2*c2*f0^4*f1+48*c1^2*c2*f0^3*f1^2+24*c1^2*c2*f0^3*f1*f2+48*c1^2*c2*f0^2*f1^3+48*c1^2*c2*f0^2*f1^2*f2+24*c1^2*c2*f0^2*f1*f2^2+48*c1^2*c2*f0*f1^4+96*c1^2*c2*f0*f1^3*f2+48*c1^2*c2*f0*f1^2*f2^2+24*c1^2*c2*f0*f1*f2^3+48*c1^2*c2*f1^4*f2+48*c1^2*c2*f1^3*f2^2+48*c1^2*c2*f1^2*f2^3+12*c1^2*c2*f1*f2^4+24*c1*c2^2*f0^3*f1^2+24*c1*c2^2*f0^3*f1*f2+24*c1*c2^2*f0^2*f1^3+24*c1*c2^2*f0^2*f1^2*f2+24*c1*c2^2*f0*f1^4+48*c1*c2^2*f0*f1^3*f2+24*c1*c2^2*f0*f1^2*f2^2+24*c1*c2^2*f0*f1*f2^3+24*c1*c2^2*f1^4*f2+24*c1*c2^2*f1^3*f2^2+24*c1*c2^2*f1^2*f2^3+12*c2^3*f0^2*f1^3+12*c2^3*f0^2*f1^2*f2+12*c2^3*f0*f1^2*f2^2+12*c2^3*f1^3*f2^2, 24*c0^3*f0^2*f1*f2^2+12*c0^3*f0*f1^4+12*c0^3*f1^4*f2+24*c0^2*c1*f0^2*f1^3+72*c0^2*c1*f0^2*f1^2*f2+96*c0^2*c1*f0*f1^3*f2+72*c0^2*c1*f0*f1^2*f2^2+24*c0^2*c1*f1^3*f2^2+24*c0^2*c2*f0^3*f1*f2+24*c0^2*c2*f0^2*f1*f2^2+36*c0^2*c2*f0*f1^4+24*c0^2*c2*f0*f1*f2^3+36*c0^2*c2*f1^4*f2+12*c0*c1^2*f0^3*f1^2+48*c0*c1^2*f0^2*f1^3+132*c0*c1^2*f0^2*f1^2*f2+192*c0*c1^2*f0*f1^3*f2+132*c0*c1^2*f0*f1^2*f2^2+48*c0*c1^2*f1^3*f2^2+12*c0*c1^2*f1^2*f2^3+24*c0*c1*c2*f0^3*f1^2+48*c0*c1*c2*f0^2*f1^3+120*c0*c1*c2*f0^2*f1^2*f2+192*c0*c1*c2*f0*f1^3*f2+120*c0*c1*c2*f0*f1^2*f2^2+48*c0*c1*c2*f1^3*f2^2+24*c0*c1*c2*f1^2*f2^3+24*c0*c2^2*f0^3*f1*f2+24*c0*c2^2*f0^2*f1*f2^2+36*c0*c2^2*f0*f1^4+24*c0*c2^2*f0*f1*f2^3+36*c0*c2^2*f1^4*f2+48*c1^3*f0^3*f1*f2+96*c1^3*f0^2*f1*f2^2+96*c1^3*f0*f1^4+48*c1^3*f0*f1*f2^3+96*c1^3*f1^4*f2+12*c1^2*c2*f0^3*f1^2+48*c1^2*c2*f0^2*f1^3+132*c1^2*c2*f0^2*f1^2*f2+192*c1^2*c2*f0*f1^3*f2+132*c1^2*c2*f0*f1^2*f2^2+48*c1^2*c2*f1^3*f2^2+12*c1^2*c2*f1^2*f2^3+24*c1*c2^2*f0^2*f1^3+72*c1*c2^2*f0^2*f1^2*f2+96*c1*c2^2*f0*f1^3*f2+72*c1*c2^2*f0*f1^2*f2^2+24*c1*c2^2*f1^3*f2^2+24*c2^3*f0^2*f1*f2^2+12*c2^3*f0*f1^4+12*c2^3*f1^4*f2, 12*c0^3*f0^2*f1^2*f2+24*c0^3*f0*f1^3*f2+12*c0^3*f0*f1^2*f2^2+24*c0^2*c1*f0^2*f1^3+48*c0^2*c1*f0^2*f1^2*f2+48*c0^2*c1*f0^2*f1*f2^2+24*c0^2*c1*f0*f1^4+48*c0^2*c1*f0*f1^3*f2+48*c0^2*c1*f0*f1^2*f2^2+24*c0^2*c1*f1^4*f2+24*c0^2*c1*f1^3*f2^2+12*c0^2*c2*f0^3*f1^2+24*c0^2*c2*f0^2*f1^2*f2+72*c0^2*c2*f0*f1^3*f2+24*c0^2*c2*f0*f1^2*f2^2+12*c0^2*c2*f1^2*f2^3+24*c0*c1^2*f0^3*f1*f2+48*c0*c1^2*f0^2*f1^3+96*c0*c1^2*f0^2*f1^2*f2+48*c0*c1^2*f0^2*f1*f2^2+48*c0*c1^2*f0*f1^4+96*c0*c1^2*f0*f1^3*f2+96*c0*c1^2*f0*f1^2*f2^2+24*c0*c1^2*f0*f1*f2^3+48*c0*c1^2*f1^4*f2+48*c0*c1^2*f1^3*f2^2+48*c0*c1*c2*f0^3*f1*f2+48*c0*c1*c2*f0^2*f1^3+96*c0*c1*c2*f0^2*f1^2*f2+48*c0*c1*c2*f0*f1^4+96*c0*c1*c2*f0*f1^3*f2+96*c0*c1*c2*f0*f1^2*f2^2+48*c0*c1*c2*f0*f1*f2^3+48*c0*c1*c2*f1^4*f2+48*c0*c1*c2*f1^3*f2^2+12*c0*c2^2*f0^3*f1^2+24*c0*c2^2*f0^2*f1^2*f2+72*c0*c2^2*f0*f1^3*f2+24*c0*c2^2*f0*f1^2*f2^2+12*c0*c2^2*f1^2*f2^3+24*c1^3*f0^3*f1^2+72*c1^3*f0^2*f1^2*f2+192*c1^3*f0*f1^3*f2+72*c1^3*f0*f1^2*f2^2+24*c1^3*f1^2*f2^3+24*c1^2*c2*f0^3*f1*f2+48*c1^2*c2*f0^2*f1^3+96*c1^2*c2*f0^2*f1^2*f2+48*c1^2*c2*f0^2*f1*f2^2+48*c1^2*c2*f0*f1^4+96*c1^2*c2*f0*f1^3*f2+96*c1^2*c2*f0*f1^2*f2^2+24*c1^2*c2*f0*f1*f2^3+48*c1^2*c2*f1^4*f2+48*c1^2*c2*f1^3*f2^2+24*c1*c2^2*f0^2*f1^3+48*c1*c2^2*f0^2*f1^2*f2+48*c1*c2^2*f0^2*f1*f2^2+24*c1*c2^2*f0*f1^4+48*c1*c2^2*f0*f1^3*f2+48*c1*c2^2*f0*f1^2*f2^2+24*c1*c2^2*f1^4*f2+24*c1*c2^2*f1^3*f2^2+12*c2^3*f0^2*f1^2*f2+24*c2^3*f0*f1^3*f2+12*c2^3*f0*f1^2*f2^2, 2*c0^3*f0^3*f1^2+4*c0^3*f0*f1^3*f2+2*c0^3*f1^2*f2^3+4*c0^2*c1*f0^4*f1+4*c0^2*c1*f0^4*f2+4*c0^2*c1*f0^3*f1*f2+8*c0^2*c1*f0*f1^4+4*c0^2*c1*f0*f1*f2^3+4*c0^2*c1*f0*f2^4+8*c0^2*c1*f1^5+8*c0^2*c1*f1^4*f2+4*c0^2*c1*f1*f2^4+6*c0^2*c2*f0^3*f1^2+4*c0^2*c2*f0^2*f1^3+4*c0^2*c2*f0*f1^3*f2+4*c0^2*c2*f1^3*f2^2+6*c0^2*c2*f1^2*f2^3+2*c0*c1^2*f0^5+8*c0*c1^2*f0^4*f1+4*c0*c1^2*f0^4*f2+8*c0*c1^2*f0^3*f1*f2+2*c0*c1^2*f0^3*f2^2+2*c0*c1^2*f0^2*f2^3+16*c0*c1^2*f0*f1^4+8*c0*c1^2*f0*f1*f2^3+4*c0*c1^2*f0*f2^4+16*c0*c1^2*f1^5+16*c0*c1^2*f1^4*f2+8*c0*c1^2*f1*f2^4+2*c0*c1^2*f2^5+4*c0*c1*c2*f0^5+8*c0*c1*c2*f0^4*f1+8*c0*c1*c2*f0^3*f1*f2+4*c0*c1*c2*f0^3*f2^2+4*c0*c1*c2*f0^2*f2^3+16*c0*c1*c2*f0*f1^4+8*c0*c1*c2*f0*f1*f2^3+16*c0*c1*c2*f1^5+16*c0*c1*c2*f1^4*f2+8*c0*c1*c2*f1*f2^4+4*c0*c1*c2*f2^5+6*c0*c2^2*f0^3*f1^2+4*c0*c2^2*f0^2*f1^3+4*c0*c2^2*f0*f1^3*f2+4*c0*c2^2*f1^3*f2^2+6*c0*c2^2*f1^2*f2^3+16*c1^3*f0^3*f1^2+8*c1^3*f0^2*f1^3+16*c1^3*f0*f1^3*f2+8*c1^3*f1^3*f2^2+16*c1^3*f1^2*f2^3+2*c1^2*c2*f0^5+8*c1^2*c2*f0^4*f1+4*c1^2*c2*f0^4*f2+8*c1^2*c2*f0^3*f1*f2+2*c1^2*c2*f0^3*f2^2+2*c1^2*c2*f0^2*f2^3+16*c1^2*c2*f0*f1^4+8*c1^2*c2*f0*f1*f2^3+4*c1^2*c2*f0*f2^4+16*c1^2*c2*f1^5+16*c1^2*c2*f1^4*f2+8*c1^2*c2*f1*f2^4+2*c1^2*c2*f2^5+4*c1*c2^2*f0^4*f1+4*c1*c2^2*f0^4*f2+4*c1*c2^2*f0^3*f1*f2+8*c1*c2^2*f0*f1^4+4*c1*c2^2*f0*f1*f2^3+4*c1*c2^2*f0*f2^4+8*c1*c2^2*f1^5+8*c1*c2^2*f1^4*f2+4*c1*c2^2*f1*f2^4+2*c2^3*f0^3*f1^2+4*c2^3*f0*f1^3*f2+2*c2^3*f1^2*f2^3, 6*c0^3*f0^2*f1^2*f2+12*c0^3*f0*f1^3*f2+6*c0^3*f0*f1^2*f2^2+12*c0^2*c1*f0^3*f1*f2+12*c0^2*c1*f0^3*f2^2+24*c0^2*c1*f0^2*f1*f2^2+12*c0^2*c1*f0^2*f2^3+24*c0^2*c1*f0*f1^4+12*c0^2*c1*f0*f1*f2^3+24*c0^2*c1*f1^5+24*c0^2*c1*f1^4*f2+12*c0^2*c2*f0^2*f1^3+18*c0^2*c2*f0^2*f1^2*f2+12*c0^2*c2*f0*f1^3*f2+18*c0^2*c2*f0*f1^2*f2^2+12*c0^2*c2*f1^3*f2^2+6*c0*c1^2*f0^4*f2+24*c0*c1^2*f0^3*f1*f2+18*c0*c1^2*f0^3*f2^2+48*c0*c1^2*f0^2*f1*f2^2+18*c0*c1^2*f0^2*f2^3+48*c0*c1^2*f0*f1^4+24*c0*c1^2*f0*f1*f2^3+6*c0*c1^2*f0*f2^4+48*c0*c1^2*f1^5+48*c0*c1^2*f1^4*f2+12*c0*c1*c2*f0^4*f2+24*c0*c1*c2*f0^3*f1*f2+12*c0*c1*c2*f0^3*f2^2+48*c0*c1*c2*f0^2*f1*f2^2+12*c0*c1*c2*f0^2*f2^3+48*c0*c1*c2*f0*f1^4+24*c0*c1*c2*f0*f1*f2^3+12*c0*c1*c2*f0*f2^4+48*c0*c1*c2*f1^5+48*c0*c1*c2*f1^4*f2+12*c0*c2^2*f0^2*f1^3+18*c0*c2^2*f0^2*f1^2*f2+12*c0*c2^2*f0*f1^3*f2+18*c0*c2^2*f0*f1^2*f2^2+12*c0*c2^2*f1^3*f2^2+24*c1^3*f0^2*f1^3+48*c1^3*f0^2*f1^2*f2+48*c1^3*f0*f1^3*f2+48*c1^3*f0*f1^2*f2^2+24*c1^3*f1^3*f2^2+6*c1^2*c2*f0^4*f2+24*c1^2*c2*f0^3*f1*f2+18*c1^2*c2*f0^3*f2^2+48*c1^2*c2*f0^2*f1*f2^2+18*c1^2*c2*f0^2*f2^3+48*c1^2*c2*f0*f1^4+24*c1^2*c2*f0*f1*f2^3+6*c1^2*c2*f0*f2^4+48*c1^2*c2*f1^5+48*c1^2*c2*f1^4*f2+12*c1*c2^2*f0^3*f1*f2+12*c1*c2^2*f0^3*f2^2+24*c1*c2^2*f0^2*f1*f2^2+12*c1*c2^2*f0^2*f2^3+24*c1*c2^2*f0*f1^4+12*c1*c2^2*f0*f1*f2^3+24*c1*c2^2*f1^5+24*c1*c2^2*f1^4*f2+6*c2^3*f0^2*f1^2*f2+12*c2^3*f0*f1^3*f2+6*c2^3*f0*f1^2*f2^2; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(2,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }