//This is the ideal Fourier invariants. ring rQ = 0, (q1,q2,q3,q4,q5,q6,q7), dp; ideal Invariants = q3*q6-q2*q7, q4*q5-q2*q7, q3*q5-q1*q7, q2*q5-q1*q6, q2*q3-q1*q4; // This is the inverse of the Fourier transform. matrix ptoq[9][7] = 1/16,1/16,5/16,1/16,1/4,1/8,1/8, 1/8,-1/8,1/8,-1/8,1/4,-1/4,0, 1/16,1/16,-3/16,1/16,0,1/8,-1/8, 1/8,1/8,-1/8,-1/8,1/4,0,-1/4, 1/4,-1/4,-1/4,1/4,0,0,0, 1/8,1/8,-1/8,-1/8,-1/4,0,1/4, 1/16,1/16,-3/16,1/16,0,-1/8,1/8, 1/8,-1/8,1/8,-1/8,-1/4,1/4,0, 1/16,1/16,5/16,1/16,-1/4,-1/8,-1/8; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4,p5,p6,p7,p8,p9),dp; //This is the Fourier transform. matrix qtop[7][9] = 1,1,1,1,1,1,1,1,1, 1,-1,1,1,-1,1,1,-1,1, 1,1/5,-3/5,-1/5,-1/5,-1/5,-3/5,1/5,1, 1,-1,1,-1,1,-1,1,-1,1, 1,1/2,0,1/2,0,-1/2,0,-1/2,-1, 1,-1,1,0,0,0,-1,1,-1, 1,0,-1,-1,0,1,1,0,-1; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(b0,b1,e0,e1,g0,g1),dp; ideal P = b0^2*e0^4*g0^5+b0^2*e0^4*g1^5+3*b0^2*e0^3*e1*g0^4*g1+b0^2*e0^3*e1*g0^3*g1^2+b0^2*e0^3*e1*g0^2*g1^3+3*b0^2*e0^3*e1*g0*g1^4+6*b0^2*e0^2*e1^2*g0^3*g1^2+6*b0^2*e0^2*e1^2*g0^2*g1^3+3*b0^2*e0*e1^3*g0^4*g1+b0^2*e0*e1^3*g0^3*g1^2+b0^2*e0*e1^3*g0^2*g1^3+3*b0^2*e0*e1^3*g0*g1^4+b0^2*e1^4*g0^5+b0^2*e1^4*g1^5+2*b0*b1*e0^4*g0^4*g1+2*b0*b1*e0^4*g0*g1^4+2*b0*b1*e0^3*e1*g0^5+6*b0*b1*e0^3*e1*g0^3*g1^2+6*b0*b1*e0^3*e1*g0^2*g1^3+2*b0*b1*e0^3*e1*g1^5+8*b0*b1*e0^2*e1^2*g0^4*g1+4*b0*b1*e0^2*e1^2*g0^3*g1^2+4*b0*b1*e0^2*e1^2*g0^2*g1^3+8*b0*b1*e0^2*e1^2*g0*g1^4+2*b0*b1*e0*e1^3*g0^5+6*b0*b1*e0*e1^3*g0^3*g1^2+6*b0*b1*e0*e1^3*g0^2*g1^3+2*b0*b1*e0*e1^3*g1^5+2*b0*b1*e1^4*g0^4*g1+2*b0*b1*e1^4*g0*g1^4+b1^2*e0^4*g0^5+b1^2*e0^4*g1^5+3*b1^2*e0^3*e1*g0^4*g1+b1^2*e0^3*e1*g0^3*g1^2+b1^2*e0^3*e1*g0^2*g1^3+3*b1^2*e0^3*e1*g0*g1^4+6*b1^2*e0^2*e1^2*g0^3*g1^2+6*b1^2*e0^2*e1^2*g0^2*g1^3+3*b1^2*e0*e1^3*g0^4*g1+b1^2*e0*e1^3*g0^3*g1^2+b1^2*e0*e1^3*g0^2*g1^3+3*b1^2*e0*e1^3*g0*g1^4+b1^2*e1^4*g0^5+b1^2*e1^4*g1^5, 2*b0^2*e0^4*g0^4*g1+2*b0^2*e0^4*g0*g1^4+2*b0^2*e0^3*e1*g0^4*g1+6*b0^2*e0^3*e1*g0^3*g1^2+6*b0^2*e0^3*e1*g0^2*g1^3+2*b0^2*e0^3*e1*g0*g1^4+12*b0^2*e0^2*e1^2*g0^3*g1^2+12*b0^2*e0^2*e1^2*g0^2*g1^3+2*b0^2*e0*e1^3*g0^4*g1+6*b0^2*e0*e1^3*g0^3*g1^2+6*b0^2*e0*e1^3*g0^2*g1^3+2*b0^2*e0*e1^3*g0*g1^4+2*b0^2*e1^4*g0^4*g1+2*b0^2*e1^4*g0*g1^4+4*b0*b1*e0^4*g0^3*g1^2+4*b0*b1*e0^4*g0^2*g1^3+4*b0*b1*e0^3*e1*g0^4*g1+12*b0*b1*e0^3*e1*g0^3*g1^2+12*b0*b1*e0^3*e1*g0^2*g1^3+4*b0*b1*e0^3*e1*g0*g1^4+8*b0*b1*e0^2*e1^2*g0^4*g1+16*b0*b1*e0^2*e1^2*g0^3*g1^2+16*b0*b1*e0^2*e1^2*g0^2*g1^3+8*b0*b1*e0^2*e1^2*g0*g1^4+4*b0*b1*e0*e1^3*g0^4*g1+12*b0*b1*e0*e1^3*g0^3*g1^2+12*b0*b1*e0*e1^3*g0^2*g1^3+4*b0*b1*e0*e1^3*g0*g1^4+4*b0*b1*e1^4*g0^3*g1^2+4*b0*b1*e1^4*g0^2*g1^3+2*b1^2*e0^4*g0^4*g1+2*b1^2*e0^4*g0*g1^4+2*b1^2*e0^3*e1*g0^4*g1+6*b1^2*e0^3*e1*g0^3*g1^2+6*b1^2*e0^3*e1*g0^2*g1^3+2*b1^2*e0^3*e1*g0*g1^4+12*b1^2*e0^2*e1^2*g0^3*g1^2+12*b1^2*e0^2*e1^2*g0^2*g1^3+2*b1^2*e0*e1^3*g0^4*g1+6*b1^2*e0*e1^3*g0^3*g1^2+6*b1^2*e0*e1^3*g0^2*g1^3+2*b1^2*e0*e1^3*g0*g1^4+2*b1^2*e1^4*g0^4*g1+2*b1^2*e1^4*g0*g1^4, b0^2*e0^4*g0^3*g1^2+b0^2*e0^4*g0^2*g1^3+b0^2*e0^3*e1*g0^5+3*b0^2*e0^3*e1*g0^3*g1^2+3*b0^2*e0^3*e1*g0^2*g1^3+b0^2*e0^3*e1*g1^5+6*b0^2*e0^2*e1^2*g0^4*g1+6*b0^2*e0^2*e1^2*g0*g1^4+b0^2*e0*e1^3*g0^5+3*b0^2*e0*e1^3*g0^3*g1^2+3*b0^2*e0*e1^3*g0^2*g1^3+b0^2*e0*e1^3*g1^5+b0^2*e1^4*g0^3*g1^2+b0^2*e1^4*g0^2*g1^3+2*b0*b1*e0^4*g0^3*g1^2+2*b0*b1*e0^4*g0^2*g1^3+6*b0*b1*e0^3*e1*g0^4*g1+2*b0*b1*e0^3*e1*g0^3*g1^2+2*b0*b1*e0^3*e1*g0^2*g1^3+6*b0*b1*e0^3*e1*g0*g1^4+4*b0*b1*e0^2*e1^2*g0^5+8*b0*b1*e0^2*e1^2*g0^3*g1^2+8*b0*b1*e0^2*e1^2*g0^2*g1^3+4*b0*b1*e0^2*e1^2*g1^5+6*b0*b1*e0*e1^3*g0^4*g1+2*b0*b1*e0*e1^3*g0^3*g1^2+2*b0*b1*e0*e1^3*g0^2*g1^3+6*b0*b1*e0*e1^3*g0*g1^4+2*b0*b1*e1^4*g0^3*g1^2+2*b0*b1*e1^4*g0^2*g1^3+b1^2*e0^4*g0^3*g1^2+b1^2*e0^4*g0^2*g1^3+b1^2*e0^3*e1*g0^5+3*b1^2*e0^3*e1*g0^3*g1^2+3*b1^2*e0^3*e1*g0^2*g1^3+b1^2*e0^3*e1*g1^5+6*b1^2*e0^2*e1^2*g0^4*g1+6*b1^2*e0^2*e1^2*g0*g1^4+b1^2*e0*e1^3*g0^5+3*b1^2*e0*e1^3*g0^3*g1^2+3*b1^2*e0*e1^3*g0^2*g1^3+b1^2*e0*e1^3*g1^5+b1^2*e1^4*g0^3*g1^2+b1^2*e1^4*g0^2*g1^3, 2*b0^2*e0^4*g0^4*g1+2*b0^2*e0^4*g0*g1^4+2*b0^2*e0^3*e1*g0^5+6*b0^2*e0^3*e1*g0^3*g1^2+6*b0^2*e0^3*e1*g0^2*g1^3+2*b0^2*e0^3*e1*g1^5+8*b0^2*e0^2*e1^2*g0^4*g1+4*b0^2*e0^2*e1^2*g0^3*g1^2+4*b0^2*e0^2*e1^2*g0^2*g1^3+8*b0^2*e0^2*e1^2*g0*g1^4+2*b0^2*e0*e1^3*g0^5+6*b0^2*e0*e1^3*g0^3*g1^2+6*b0^2*e0*e1^3*g0^2*g1^3+2*b0^2*e0*e1^3*g1^5+2*b0^2*e1^4*g0^4*g1+2*b0^2*e1^4*g0*g1^4+4*b0*b1*e0^4*g0^3*g1^2+4*b0*b1*e0^4*g0^2*g1^3+12*b0*b1*e0^3*e1*g0^4*g1+4*b0*b1*e0^3*e1*g0^3*g1^2+4*b0*b1*e0^3*e1*g0^2*g1^3+12*b0*b1*e0^3*e1*g0*g1^4+8*b0*b1*e0^2*e1^2*g0^5+16*b0*b1*e0^2*e1^2*g0^3*g1^2+16*b0*b1*e0^2*e1^2*g0^2*g1^3+8*b0*b1*e0^2*e1^2*g1^5+12*b0*b1*e0*e1^3*g0^4*g1+4*b0*b1*e0*e1^3*g0^3*g1^2+4*b0*b1*e0*e1^3*g0^2*g1^3+12*b0*b1*e0*e1^3*g0*g1^4+4*b0*b1*e1^4*g0^3*g1^2+4*b0*b1*e1^4*g0^2*g1^3+2*b1^2*e0^4*g0^4*g1+2*b1^2*e0^4*g0*g1^4+2*b1^2*e0^3*e1*g0^5+6*b1^2*e0^3*e1*g0^3*g1^2+6*b1^2*e0^3*e1*g0^2*g1^3+2*b1^2*e0^3*e1*g1^5+8*b1^2*e0^2*e1^2*g0^4*g1+4*b1^2*e0^2*e1^2*g0^3*g1^2+4*b1^2*e0^2*e1^2*g0^2*g1^3+8*b1^2*e0^2*e1^2*g0*g1^4+2*b1^2*e0*e1^3*g0^5+6*b1^2*e0*e1^3*g0^3*g1^2+6*b1^2*e0*e1^3*g0^2*g1^3+2*b1^2*e0*e1^3*g1^5+2*b1^2*e1^4*g0^4*g1+2*b1^2*e1^4*g0*g1^4, 4*b0^2*e0^4*g0^3*g1^2+4*b0^2*e0^4*g0^2*g1^3+4*b0^2*e0^3*e1*g0^4*g1+12*b0^2*e0^3*e1*g0^3*g1^2+12*b0^2*e0^3*e1*g0^2*g1^3+4*b0^2*e0^3*e1*g0*g1^4+8*b0^2*e0^2*e1^2*g0^4*g1+16*b0^2*e0^2*e1^2*g0^3*g1^2+16*b0^2*e0^2*e1^2*g0^2*g1^3+8*b0^2*e0^2*e1^2*g0*g1^4+4*b0^2*e0*e1^3*g0^4*g1+12*b0^2*e0*e1^3*g0^3*g1^2+12*b0^2*e0*e1^3*g0^2*g1^3+4*b0^2*e0*e1^3*g0*g1^4+4*b0^2*e1^4*g0^3*g1^2+4*b0^2*e1^4*g0^2*g1^3+8*b0*b1*e0^4*g0^3*g1^2+8*b0*b1*e0^4*g0^2*g1^3+8*b0*b1*e0^3*e1*g0^4*g1+24*b0*b1*e0^3*e1*g0^3*g1^2+24*b0*b1*e0^3*e1*g0^2*g1^3+8*b0*b1*e0^3*e1*g0*g1^4+16*b0*b1*e0^2*e1^2*g0^4*g1+32*b0*b1*e0^2*e1^2*g0^3*g1^2+32*b0*b1*e0^2*e1^2*g0^2*g1^3+16*b0*b1*e0^2*e1^2*g0*g1^4+8*b0*b1*e0*e1^3*g0^4*g1+24*b0*b1*e0*e1^3*g0^3*g1^2+24*b0*b1*e0*e1^3*g0^2*g1^3+8*b0*b1*e0*e1^3*g0*g1^4+8*b0*b1*e1^4*g0^3*g1^2+8*b0*b1*e1^4*g0^2*g1^3+4*b1^2*e0^4*g0^3*g1^2+4*b1^2*e0^4*g0^2*g1^3+4*b1^2*e0^3*e1*g0^4*g1+12*b1^2*e0^3*e1*g0^3*g1^2+12*b1^2*e0^3*e1*g0^2*g1^3+4*b1^2*e0^3*e1*g0*g1^4+8*b1^2*e0^2*e1^2*g0^4*g1+16*b1^2*e0^2*e1^2*g0^3*g1^2+16*b1^2*e0^2*e1^2*g0^2*g1^3+8*b1^2*e0^2*e1^2*g0*g1^4+4*b1^2*e0*e1^3*g0^4*g1+12*b1^2*e0*e1^3*g0^3*g1^2+12*b1^2*e0*e1^3*g0^2*g1^3+4*b1^2*e0*e1^3*g0*g1^4+4*b1^2*e1^4*g0^3*g1^2+4*b1^2*e1^4*g0^2*g1^3, 2*b0^2*e0^4*g0^3*g1^2+2*b0^2*e0^4*g0^2*g1^3+6*b0^2*e0^3*e1*g0^4*g1+2*b0^2*e0^3*e1*g0^3*g1^2+2*b0^2*e0^3*e1*g0^2*g1^3+6*b0^2*e0^3*e1*g0*g1^4+4*b0^2*e0^2*e1^2*g0^5+8*b0^2*e0^2*e1^2*g0^3*g1^2+8*b0^2*e0^2*e1^2*g0^2*g1^3+4*b0^2*e0^2*e1^2*g1^5+6*b0^2*e0*e1^3*g0^4*g1+2*b0^2*e0*e1^3*g0^3*g1^2+2*b0^2*e0*e1^3*g0^2*g1^3+6*b0^2*e0*e1^3*g0*g1^4+2*b0^2*e1^4*g0^3*g1^2+2*b0^2*e1^4*g0^2*g1^3+4*b0*b1*e0^4*g0^4*g1+4*b0*b1*e0^4*g0*g1^4+4*b0*b1*e0^3*e1*g0^5+12*b0*b1*e0^3*e1*g0^3*g1^2+12*b0*b1*e0^3*e1*g0^2*g1^3+4*b0*b1*e0^3*e1*g1^5+16*b0*b1*e0^2*e1^2*g0^4*g1+8*b0*b1*e0^2*e1^2*g0^3*g1^2+8*b0*b1*e0^2*e1^2*g0^2*g1^3+16*b0*b1*e0^2*e1^2*g0*g1^4+4*b0*b1*e0*e1^3*g0^5+12*b0*b1*e0*e1^3*g0^3*g1^2+12*b0*b1*e0*e1^3*g0^2*g1^3+4*b0*b1*e0*e1^3*g1^5+4*b0*b1*e1^4*g0^4*g1+4*b0*b1*e1^4*g0*g1^4+2*b1^2*e0^4*g0^3*g1^2+2*b1^2*e0^4*g0^2*g1^3+6*b1^2*e0^3*e1*g0^4*g1+2*b1^2*e0^3*e1*g0^3*g1^2+2*b1^2*e0^3*e1*g0^2*g1^3+6*b1^2*e0^3*e1*g0*g1^4+4*b1^2*e0^2*e1^2*g0^5+8*b1^2*e0^2*e1^2*g0^3*g1^2+8*b1^2*e0^2*e1^2*g0^2*g1^3+4*b1^2*e0^2*e1^2*g1^5+6*b1^2*e0*e1^3*g0^4*g1+2*b1^2*e0*e1^3*g0^3*g1^2+2*b1^2*e0*e1^3*g0^2*g1^3+6*b1^2*e0*e1^3*g0*g1^4+2*b1^2*e1^4*g0^3*g1^2+2*b1^2*e1^4*g0^2*g1^3, b0^2*e0^4*g0^3*g1^2+b0^2*e0^4*g0^2*g1^3+3*b0^2*e0^3*e1*g0^4*g1+b0^2*e0^3*e1*g0^3*g1^2+b0^2*e0^3*e1*g0^2*g1^3+3*b0^2*e0^3*e1*g0*g1^4+2*b0^2*e0^2*e1^2*g0^5+4*b0^2*e0^2*e1^2*g0^3*g1^2+4*b0^2*e0^2*e1^2*g0^2*g1^3+2*b0^2*e0^2*e1^2*g1^5+3*b0^2*e0*e1^3*g0^4*g1+b0^2*e0*e1^3*g0^3*g1^2+b0^2*e0*e1^3*g0^2*g1^3+3*b0^2*e0*e1^3*g0*g1^4+b0^2*e1^4*g0^3*g1^2+b0^2*e1^4*g0^2*g1^3+2*b0*b1*e0^4*g0^3*g1^2+2*b0*b1*e0^4*g0^2*g1^3+2*b0*b1*e0^3*e1*g0^5+6*b0*b1*e0^3*e1*g0^3*g1^2+6*b0*b1*e0^3*e1*g0^2*g1^3+2*b0*b1*e0^3*e1*g1^5+12*b0*b1*e0^2*e1^2*g0^4*g1+12*b0*b1*e0^2*e1^2*g0*g1^4+2*b0*b1*e0*e1^3*g0^5+6*b0*b1*e0*e1^3*g0^3*g1^2+6*b0*b1*e0*e1^3*g0^2*g1^3+2*b0*b1*e0*e1^3*g1^5+2*b0*b1*e1^4*g0^3*g1^2+2*b0*b1*e1^4*g0^2*g1^3+b1^2*e0^4*g0^3*g1^2+b1^2*e0^4*g0^2*g1^3+3*b1^2*e0^3*e1*g0^4*g1+b1^2*e0^3*e1*g0^3*g1^2+b1^2*e0^3*e1*g0^2*g1^3+3*b1^2*e0^3*e1*g0*g1^4+2*b1^2*e0^2*e1^2*g0^5+4*b1^2*e0^2*e1^2*g0^3*g1^2+4*b1^2*e0^2*e1^2*g0^2*g1^3+2*b1^2*e0^2*e1^2*g1^5+3*b1^2*e0*e1^3*g0^4*g1+b1^2*e0*e1^3*g0^3*g1^2+b1^2*e0*e1^3*g0^2*g1^3+3*b1^2*e0*e1^3*g0*g1^4+b1^2*e1^4*g0^3*g1^2+b1^2*e1^4*g0^2*g1^3, 2*b0^2*e0^4*g0^3*g1^2+2*b0^2*e0^4*g0^2*g1^3+2*b0^2*e0^3*e1*g0^4*g1+6*b0^2*e0^3*e1*g0^3*g1^2+6*b0^2*e0^3*e1*g0^2*g1^3+2*b0^2*e0^3*e1*g0*g1^4+4*b0^2*e0^2*e1^2*g0^4*g1+8*b0^2*e0^2*e1^2*g0^3*g1^2+8*b0^2*e0^2*e1^2*g0^2*g1^3+4*b0^2*e0^2*e1^2*g0*g1^4+2*b0^2*e0*e1^3*g0^4*g1+6*b0^2*e0*e1^3*g0^3*g1^2+6*b0^2*e0*e1^3*g0^2*g1^3+2*b0^2*e0*e1^3*g0*g1^4+2*b0^2*e1^4*g0^3*g1^2+2*b0^2*e1^4*g0^2*g1^3+4*b0*b1*e0^4*g0^4*g1+4*b0*b1*e0^4*g0*g1^4+4*b0*b1*e0^3*e1*g0^4*g1+12*b0*b1*e0^3*e1*g0^3*g1^2+12*b0*b1*e0^3*e1*g0^2*g1^3+4*b0*b1*e0^3*e1*g0*g1^4+24*b0*b1*e0^2*e1^2*g0^3*g1^2+24*b0*b1*e0^2*e1^2*g0^2*g1^3+4*b0*b1*e0*e1^3*g0^4*g1+12*b0*b1*e0*e1^3*g0^3*g1^2+12*b0*b1*e0*e1^3*g0^2*g1^3+4*b0*b1*e0*e1^3*g0*g1^4+4*b0*b1*e1^4*g0^4*g1+4*b0*b1*e1^4*g0*g1^4+2*b1^2*e0^4*g0^3*g1^2+2*b1^2*e0^4*g0^2*g1^3+2*b1^2*e0^3*e1*g0^4*g1+6*b1^2*e0^3*e1*g0^3*g1^2+6*b1^2*e0^3*e1*g0^2*g1^3+2*b1^2*e0^3*e1*g0*g1^4+4*b1^2*e0^2*e1^2*g0^4*g1+8*b1^2*e0^2*e1^2*g0^3*g1^2+8*b1^2*e0^2*e1^2*g0^2*g1^3+4*b1^2*e0^2*e1^2*g0*g1^4+2*b1^2*e0*e1^3*g0^4*g1+6*b1^2*e0*e1^3*g0^3*g1^2+6*b1^2*e0*e1^3*g0^2*g1^3+2*b1^2*e0*e1^3*g0*g1^4+2*b1^2*e1^4*g0^3*g1^2+2*b1^2*e1^4*g0^2*g1^3, b0^2*e0^4*g0^4*g1+b0^2*e0^4*g0*g1^4+b0^2*e0^3*e1*g0^5+3*b0^2*e0^3*e1*g0^3*g1^2+3*b0^2*e0^3*e1*g0^2*g1^3+b0^2*e0^3*e1*g1^5+4*b0^2*e0^2*e1^2*g0^4*g1+2*b0^2*e0^2*e1^2*g0^3*g1^2+2*b0^2*e0^2*e1^2*g0^2*g1^3+4*b0^2*e0^2*e1^2*g0*g1^4+b0^2*e0*e1^3*g0^5+3*b0^2*e0*e1^3*g0^3*g1^2+3*b0^2*e0*e1^3*g0^2*g1^3+b0^2*e0*e1^3*g1^5+b0^2*e1^4*g0^4*g1+b0^2*e1^4*g0*g1^4+2*b0*b1*e0^4*g0^5+2*b0*b1*e0^4*g1^5+6*b0*b1*e0^3*e1*g0^4*g1+2*b0*b1*e0^3*e1*g0^3*g1^2+2*b0*b1*e0^3*e1*g0^2*g1^3+6*b0*b1*e0^3*e1*g0*g1^4+12*b0*b1*e0^2*e1^2*g0^3*g1^2+12*b0*b1*e0^2*e1^2*g0^2*g1^3+6*b0*b1*e0*e1^3*g0^4*g1+2*b0*b1*e0*e1^3*g0^3*g1^2+2*b0*b1*e0*e1^3*g0^2*g1^3+6*b0*b1*e0*e1^3*g0*g1^4+2*b0*b1*e1^4*g0^5+2*b0*b1*e1^4*g1^5+b1^2*e0^4*g0^4*g1+b1^2*e0^4*g0*g1^4+b1^2*e0^3*e1*g0^5+3*b1^2*e0^3*e1*g0^3*g1^2+3*b1^2*e0^3*e1*g0^2*g1^3+b1^2*e0^3*e1*g1^5+4*b1^2*e0^2*e1^2*g0^4*g1+2*b1^2*e0^2*e1^2*g0^3*g1^2+2*b1^2*e0^2*e1^2*g0^2*g1^3+4*b1^2*e0^2*e1^2*g0*g1^4+b1^2*e0*e1^3*g0^5+3*b1^2*e0*e1^3*g0^3*g1^2+3*b1^2*e0*e1^3*g0^2*g1^3+b1^2*e0*e1^3*g1^5+b1^2*e1^4*g0^4*g1+b1^2*e1^4*g0*g1^4; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(0,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }