//This is the ideal Fourier invariants. ring rQ = 0,(q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11,q12,q13,q14),dp; ideal Invariants = q11*q13-q12*q14, q9*q13-q8*q14, q3*q13-q2*q14, q8*q11-q9*q12, q7*q11-q10*q13, q2*q11-q3*q12, q9*q10-q5*q11, q8*q10-q5*q12, q7*q10-q6*q12, q5*q10-q4*q11, q7*q9-q5*q13, q6*q9-q4*q14, q6*q8-q4*q13, q3*q8-q2*q9, q5*q7-q6*q8, q3*q6-q1*q14, q2*q6-q1*q13, q5^2-q4*q9, q3*q4-q1*q9, q2*q4-q1*q8, q6*q13^2-q7^2*q14, q6*q11^2-q10^2*q14, q6*q9^2-q3*q11^2, q6*q8*q9-q3*q11*q12, q5*q6*q9-q3*q10*q11, q6*q8^2-q3*q12^2, q4*q7*q8-q2*q10*q12, q5*q6*q8-q3*q10*q12, q4*q6*q8-q1*q11*q12, q4*q6*q8-q2*q10^2, q3*q7^2-q2*q6*q13, q4^2*q7-q1*q10*q12, q5^2*q6-q1*q11^2, q5^2*q6-q3*q10^2, q4*q5*q6-q1*q10*q11, q4^2*q6-q1*q10^2, q7^2*q8^2-q2*q12^2*q13; // This is the inverse of the Fourier transform. matrix ptoq[18][14] = 1/64,1/32,1/64,5/32,1/8,5/64,1/16,1/16,1/32,3/16,1/8,1/16,1/32,1/64, 1/16,0,-1/16,3/8,-1/4,1/16,0,0,-1/8,1/4,-1/4,0,0,-1/16, 1/32,-1/16,1/32,1/16,0,5/32,-1/8,-1/8,1/16,1/8,0,-1/8,-1/16,1/32, 1/32,1/16,1/32,1/16,0,-3/32,-1/8,1/8,1/16,-1/8,0,-1/8,1/16,1/32, 1/16,0,-1/16,-1/8,1/4,1/16,0,0,-1/8,-1/4,1/4,0,0,-1/16, 1/32,-1/16,1/32,1/16,0,-3/32,1/8,-1/8,1/16,-1/8,0,1/8,-1/16,1/32, 1/64,1/32,1/64,-3/32,-1/8,5/64,1/16,1/16,1/32,-1/16,-1/8,1/16,1/32,1/64, 1/16,1/8,1/16,1/4,1/4,-1/16,0,0,0,-1/4,-1/4,0,-1/8,-1/16, 1/16,0,-1/16,1/4,-1/4,-1/16,0,0,0,-1/4,1/4,0,0,1/16, 1/8,-1/4,1/8,0,0,-1/8,0,0,0,0,0,0,1/4,-1/8, 1/8,0,-1/8,0,0,-1/8,0,0,0,0,0,0,0,1/8, 1/16,1/8,1/16,-1/4,-1/4,-1/16,0,0,0,1/4,1/4,0,-1/8,-1/16, 1/16,0,-1/16,-1/4,1/4,-1/16,0,0,0,1/4,-1/4,0,0,1/16, 1/32,1/16,1/32,-1/16,0,5/32,1/8,-1/8,-1/16,-1/8,0,-1/8,1/16,1/32, 1/8,0,-1/8,-1/4,0,1/8,0,0,1/4,0,0,0,0,-1/8, 1/32,-1/16,1/32,-1/16,0,5/32,-1/8,1/8,-1/16,-1/8,0,1/8,-1/16,1/32, 1/32,1/16,1/32,-1/16,0,-3/32,-1/8,-1/8,-1/16,1/8,0,1/8,1/16,1/32, 1/32,-1/16,1/32,-1/16,0,-3/32,1/8,1/8,-1/16,1/8,0,-1/8,-1/16,1/32; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18),dp; //This is the Fourier transform. matrix qtop[14][18] = 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,0,-1,1,0,-1,1,1,0,-1,0,1,0,1,0,-1,1,-1, 1,-1,1,1,-1,1,1,1,-1,1,-1,1,-1,1,-1,1,1,1, 1,3/5,1/5,1/5,-1/5,1/5,-3/5,2/5,2/5,0,0,-2/5,-2/5,-1/5,-1/5,-1/5,-1/5,-1/5, 1,-1/2,0,0,1/2,0,-1,1/2,-1/2,0,0,-1/2,1/2,0,0,0,0,0, 1,1/5,1,-3/5,1/5,-3/5,1,-1/5,-1/5,-1/5,-1/5,-1/5,-1/5,1,1/5,1,-3/5,-3/5, 1,0,-1,-1,0,1,1,0,0,0,0,0,0,1,0,-1,-1,1, 1,0,-1,1,0,-1,1,0,0,0,0,0,0,-1,0,1,-1,1, 1,-1,1,1,-1,1,1,0,0,0,0,0,0,-1,1,-1,-1,-1, 1,1/3,1/3,-1/3,-1/3,-1/3,-1/3,-1/3,-1/3,0,0,1/3,1/3,-1/3,0,-1/3,1/3,1/3, 1,-1/2,0,0,1/2,0,-1,-1/2,1/2,0,0,1/2,-1/2,0,0,0,0,0, 1,0,-1,-1,0,1,1,0,0,0,0,0,0,-1,0,1,1,-1, 1,0,-1,1,0,-1,1,-1,0,1,0,-1,0,1,0,-1,1,-1, 1,-1,1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,1,1; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(c0,c1,c2,e0,e1,e2),dp; ideal P = c0^3*e0^4+2*c0^3*e1^4+c0^3*e2^4+4*c0^2*c1*e0^3*e1+4*c0^2*c1*e0^2*e1^2+4*c0^2*c1*e0*e1^3+4*c0^2*c1*e1^3*e2+4*c0^2*c1*e1^2*e2^2+4*c0^2*c1*e1*e2^3+2*c0^2*c2*e0^3*e2+2*c0^2*c2*e0^2*e2^2+2*c0^2*c2*e0*e2^3+6*c0^2*c2*e1^4+4*c0*c1^2*e0^3*e1+6*c0*c1^2*e0^2*e1^2+4*c0*c1^2*e0^2*e1*e2+8*c0*c1^2*e0*e1^3+4*c0*c1^2*e0*e1^2*e2+4*c0*c1^2*e0*e1*e2^2+8*c0*c1^2*e1^3*e2+6*c0*c1^2*e1^2*e2^2+4*c0*c1^2*e1*e2^3+4*c0*c1*c2*e0^2*e1^2+8*c0*c1*c2*e0^2*e1*e2+8*c0*c1*c2*e0*e1^3+8*c0*c1*c2*e0*e1^2*e2+8*c0*c1*c2*e0*e1*e2^2+8*c0*c1*c2*e1^3*e2+4*c0*c1*c2*e1^2*e2^2+2*c0*c2^2*e0^3*e2+2*c0*c2^2*e0^2*e2^2+2*c0*c2^2*e0*e2^3+6*c0*c2^2*e1^4+2*c1^3*e0^4+4*c1^3*e0^3*e2+4*c1^3*e0^2*e2^2+4*c1^3*e0*e2^3+16*c1^3*e1^4+2*c1^3*e2^4+4*c1^2*c2*e0^3*e1+6*c1^2*c2*e0^2*e1^2+4*c1^2*c2*e0^2*e1*e2+8*c1^2*c2*e0*e1^3+4*c1^2*c2*e0*e1^2*e2+4*c1^2*c2*e0*e1*e2^2+8*c1^2*c2*e1^3*e2+6*c1^2*c2*e1^2*e2^2+4*c1^2*c2*e1*e2^3+4*c1*c2^2*e0^3*e1+4*c1*c2^2*e0^2*e1^2+4*c1*c2^2*e0*e1^3+4*c1*c2^2*e1^3*e2+4*c1*c2^2*e1^2*e2^2+4*c1*c2^2*e1*e2^3+c2^3*e0^4+2*c2^3*e1^4+c2^3*e2^4, 4*c0^3*e0^3*e1+4*c0^3*e0*e1^3+4*c0^3*e1^3*e2+4*c0^3*e1*e2^3+4*c0^2*c1*e0^3*e1+24*c0^2*c1*e0^2*e1^2+4*c0^2*c1*e0^2*e1*e2+8*c0^2*c1*e0*e1^3+16*c0^2*c1*e0*e1^2*e2+4*c0^2*c1*e0*e1*e2^2+8*c0^2*c1*e1^3*e2+24*c0^2*c1*e1^2*e2^2+4*c0^2*c1*e1*e2^3+12*c0^2*c2*e0^2*e1*e2+12*c0^2*c2*e0*e1^3+12*c0^2*c2*e0*e1*e2^2+12*c0^2*c2*e1^3*e2+4*c0*c1^2*e0^3*e1+32*c0*c1^2*e0^2*e1^2+12*c0*c1^2*e0^2*e1*e2+16*c0*c1^2*e0*e1^3+64*c0*c1^2*e0*e1^2*e2+12*c0*c1^2*e0*e1*e2^2+16*c0*c1^2*e1^3*e2+32*c0*c1^2*e1^2*e2^2+4*c0*c1^2*e1*e2^3+16*c0*c1*c2*e0^2*e1^2+16*c0*c1*c2*e0^2*e1*e2+16*c0*c1*c2*e0*e1^3+96*c0*c1*c2*e0*e1^2*e2+16*c0*c1*c2*e0*e1*e2^2+16*c0*c1*c2*e1^3*e2+16*c0*c1*c2*e1^2*e2^2+12*c0*c2^2*e0^2*e1*e2+12*c0*c2^2*e0*e1^3+12*c0*c2^2*e0*e1*e2^2+12*c0*c2^2*e1^3*e2+8*c1^3*e0^3*e1+24*c1^3*e0^2*e1*e2+32*c1^3*e0*e1^3+24*c1^3*e0*e1*e2^2+32*c1^3*e1^3*e2+8*c1^3*e1*e2^3+4*c1^2*c2*e0^3*e1+32*c1^2*c2*e0^2*e1^2+12*c1^2*c2*e0^2*e1*e2+16*c1^2*c2*e0*e1^3+64*c1^2*c2*e0*e1^2*e2+12*c1^2*c2*e0*e1*e2^2+16*c1^2*c2*e1^3*e2+32*c1^2*c2*e1^2*e2^2+4*c1^2*c2*e1*e2^3+4*c1*c2^2*e0^3*e1+24*c1*c2^2*e0^2*e1^2+4*c1*c2^2*e0^2*e1*e2+8*c1*c2^2*e0*e1^3+16*c1*c2^2*e0*e1^2*e2+4*c1*c2^2*e0*e1*e2^2+8*c1*c2^2*e1^3*e2+24*c1*c2^2*e1^2*e2^2+4*c1*c2^2*e1*e2^3+4*c2^3*e0^3*e1+4*c2^3*e0*e1^3+4*c2^3*e1^3*e2+4*c2^3*e1*e2^3, 2*c0^3*e0^3*e2+2*c0^3*e0*e2^3+4*c0^3*e1^4+4*c0^2*c1*e0^2*e1^2+8*c0^2*c1*e0^2*e1*e2+8*c0^2*c1*e0*e1^3+8*c0^2*c1*e0*e1^2*e2+8*c0^2*c1*e0*e1*e2^2+8*c0^2*c1*e1^3*e2+4*c0^2*c1*e1^2*e2^2+2*c0^2*c2*e0^3*e2+8*c0^2*c2*e0^2*e2^2+2*c0^2*c2*e0*e2^3+12*c0^2*c2*e1^4+4*c0*c1^2*e0^2*e1^2+16*c0*c1^2*e0^2*e1*e2+16*c0*c1^2*e0*e1^3+24*c0*c1^2*e0*e1^2*e2+16*c0*c1^2*e0*e1*e2^2+16*c0*c1^2*e1^3*e2+4*c0*c1^2*e1^2*e2^2+16*c0*c1*c2*e0^2*e1*e2+16*c0*c1*c2*e0*e1^3+32*c0*c1*c2*e0*e1^2*e2+16*c0*c1*c2*e0*e1*e2^2+16*c0*c1*c2*e1^3*e2+2*c0*c2^2*e0^3*e2+8*c0*c2^2*e0^2*e2^2+2*c0*c2^2*e0*e2^3+12*c0*c2^2*e1^4+8*c1^3*e0^3*e2+16*c1^3*e0^2*e2^2+8*c1^3*e0*e2^3+32*c1^3*e1^4+4*c1^2*c2*e0^2*e1^2+16*c1^2*c2*e0^2*e1*e2+16*c1^2*c2*e0*e1^3+24*c1^2*c2*e0*e1^2*e2+16*c1^2*c2*e0*e1*e2^2+16*c1^2*c2*e1^3*e2+4*c1^2*c2*e1^2*e2^2+4*c1*c2^2*e0^2*e1^2+8*c1*c2^2*e0^2*e1*e2+8*c1*c2^2*e0*e1^3+8*c1*c2^2*e0*e1^2*e2+8*c1*c2^2*e0*e1*e2^2+8*c1*c2^2*e1^3*e2+4*c1*c2^2*e1^2*e2^2+2*c2^3*e0^3*e2+2*c2^3*e0*e2^3+4*c2^3*e1^4, 4*c0^3*e0^2*e1^2+4*c0^3*e1^2*e2^2+2*c0^2*c1*e0^4+4*c0^2*c1*e0^3*e1+4*c0^2*c1*e0^2*e1*e2+4*c0^2*c1*e0^2*e2^2+8*c0^2*c1*e0*e1^3+4*c0^2*c1*e0*e1*e2^2+8*c0^2*c1*e1^4+8*c0^2*c1*e1^3*e2+4*c0^2*c1*e1*e2^3+2*c0^2*c1*e2^4+8*c0^2*c2*e0^2*e1^2+8*c0^2*c2*e0*e1^2*e2+8*c0^2*c2*e1^2*e2^2+2*c0*c1^2*e0^4+8*c0*c1^2*e0^3*e1+4*c0*c1^2*e0^3*e2+8*c0*c1^2*e0^2*e1*e2+4*c0*c1^2*e0^2*e2^2+16*c0*c1^2*e0*e1^3+8*c0*c1^2*e0*e1*e2^2+4*c0*c1^2*e0*e2^3+16*c0*c1^2*e1^4+16*c0*c1^2*e1^3*e2+8*c0*c1^2*e1*e2^3+2*c0*c1^2*e2^4+8*c0*c1*c2*e0^3*e1+8*c0*c1*c2*e0^3*e2+8*c0*c1*c2*e0^2*e1*e2+16*c0*c1*c2*e0*e1^3+8*c0*c1*c2*e0*e1*e2^2+8*c0*c1*c2*e0*e2^3+16*c0*c1*c2*e1^4+16*c0*c1*c2*e1^3*e2+8*c0*c1*c2*e1*e2^3+8*c0*c2^2*e0^2*e1^2+8*c0*c2^2*e0*e1^2*e2+8*c0*c2^2*e1^2*e2^2+24*c1^3*e0^2*e1^2+16*c1^3*e0*e1^2*e2+24*c1^3*e1^2*e2^2+2*c1^2*c2*e0^4+8*c1^2*c2*e0^3*e1+4*c1^2*c2*e0^3*e2+8*c1^2*c2*e0^2*e1*e2+4*c1^2*c2*e0^2*e2^2+16*c1^2*c2*e0*e1^3+8*c1^2*c2*e0*e1*e2^2+4*c1^2*c2*e0*e2^3+16*c1^2*c2*e1^4+16*c1^2*c2*e1^3*e2+8*c1^2*c2*e1*e2^3+2*c1^2*c2*e2^4+2*c1*c2^2*e0^4+4*c1*c2^2*e0^3*e1+4*c1*c2^2*e0^2*e1*e2+4*c1*c2^2*e0^2*e2^2+8*c1*c2^2*e0*e1^3+4*c1*c2^2*e0*e1*e2^2+8*c1*c2^2*e1^4+8*c1*c2^2*e1^3*e2+4*c1*c2^2*e1*e2^3+2*c1*c2^2*e2^4+4*c2^3*e0^2*e1^2+4*c2^3*e1^2*e2^2, 4*c0^3*e0^2*e1*e2+4*c0^3*e0*e1^3+4*c0^3*e0*e1*e2^2+4*c0^3*e1^3*e2+4*c0^2*c1*e0^3*e1+8*c0^2*c1*e0^2*e1^2+4*c0^2*c1*e0^2*e1*e2+8*c0^2*c1*e0*e1^3+48*c0^2*c1*e0*e1^2*e2+4*c0^2*c1*e0*e1*e2^2+8*c0^2*c1*e1^3*e2+8*c0^2*c1*e1^2*e2^2+4*c0^2*c1*e1*e2^3+4*c0^2*c2*e0^3*e1+8*c0^2*c2*e0^2*e1*e2+12*c0^2*c2*e0*e1^3+8*c0^2*c2*e0*e1*e2^2+12*c0^2*c2*e1^3*e2+4*c0^2*c2*e1*e2^3+4*c0*c1^2*e0^3*e1+32*c0*c1^2*e0^2*e1^2+12*c0*c1^2*e0^2*e1*e2+16*c0*c1^2*e0*e1^3+64*c0*c1^2*e0*e1^2*e2+12*c0*c1^2*e0*e1*e2^2+16*c0*c1^2*e1^3*e2+32*c0*c1^2*e1^2*e2^2+4*c0*c1^2*e1*e2^3+48*c0*c1*c2*e0^2*e1^2+16*c0*c1*c2*e0^2*e1*e2+16*c0*c1*c2*e0*e1^3+32*c0*c1*c2*e0*e1^2*e2+16*c0*c1*c2*e0*e1*e2^2+16*c0*c1*c2*e1^3*e2+48*c0*c1*c2*e1^2*e2^2+4*c0*c2^2*e0^3*e1+8*c0*c2^2*e0^2*e1*e2+12*c0*c2^2*e0*e1^3+8*c0*c2^2*e0*e1*e2^2+12*c0*c2^2*e1^3*e2+4*c0*c2^2*e1*e2^3+8*c1^3*e0^3*e1+24*c1^3*e0^2*e1*e2+32*c1^3*e0*e1^3+24*c1^3*e0*e1*e2^2+32*c1^3*e1^3*e2+8*c1^3*e1*e2^3+4*c1^2*c2*e0^3*e1+32*c1^2*c2*e0^2*e1^2+12*c1^2*c2*e0^2*e1*e2+16*c1^2*c2*e0*e1^3+64*c1^2*c2*e0*e1^2*e2+12*c1^2*c2*e0*e1*e2^2+16*c1^2*c2*e1^3*e2+32*c1^2*c2*e1^2*e2^2+4*c1^2*c2*e1*e2^3+4*c1*c2^2*e0^3*e1+8*c1*c2^2*e0^2*e1^2+4*c1*c2^2*e0^2*e1*e2+8*c1*c2^2*e0*e1^3+48*c1*c2^2*e0*e1^2*e2+4*c1*c2^2*e0*e1*e2^2+8*c1*c2^2*e1^3*e2+8*c1*c2^2*e1^2*e2^2+4*c1*c2^2*e1*e2^3+4*c2^3*e0^2*e1*e2+4*c2^3*e0*e1^3+4*c2^3*e0*e1*e2^2+4*c2^3*e1^3*e2, 2*c0^3*e0^2*e1^2+4*c0^3*e0*e1^2*e2+2*c0^3*e1^2*e2^2+4*c0^2*c1*e0^3*e2+8*c0^2*c1*e0^2*e1*e2+8*c0^2*c1*e0*e1^3+8*c0^2*c1*e0*e1*e2^2+4*c0^2*c1*e0*e2^3+8*c0^2*c1*e1^4+8*c0^2*c1*e1^3*e2+2*c0^2*c2*e0^2*e1^2+20*c0^2*c2*e0*e1^2*e2+2*c0^2*c2*e1^2*e2^2+4*c0*c1^2*e0^3*e2+16*c0*c1^2*e0^2*e1*e2+8*c0*c1^2*e0^2*e2^2+16*c0*c1^2*e0*e1^3+16*c0*c1^2*e0*e1*e2^2+4*c0*c1^2*e0*e2^3+16*c0*c1^2*e1^4+16*c0*c1^2*e1^3*e2+16*c0*c1*c2*e0^2*e1*e2+16*c0*c1*c2*e0^2*e2^2+16*c0*c1*c2*e0*e1^3+16*c0*c1*c2*e0*e1*e2^2+16*c0*c1*c2*e1^4+16*c0*c1*c2*e1^3*e2+2*c0*c2^2*e0^2*e1^2+20*c0*c2^2*e0*e1^2*e2+2*c0*c2^2*e1^2*e2^2+8*c1^3*e0^2*e1^2+48*c1^3*e0*e1^2*e2+8*c1^3*e1^2*e2^2+4*c1^2*c2*e0^3*e2+16*c1^2*c2*e0^2*e1*e2+8*c1^2*c2*e0^2*e2^2+16*c1^2*c2*e0*e1^3+16*c1^2*c2*e0*e1*e2^2+4*c1^2*c2*e0*e2^3+16*c1^2*c2*e1^4+16*c1^2*c2*e1^3*e2+4*c1*c2^2*e0^3*e2+8*c1*c2^2*e0^2*e1*e2+8*c1*c2^2*e0*e1^3+8*c1*c2^2*e0*e1*e2^2+4*c1*c2^2*e0*e2^3+8*c1*c2^2*e1^4+8*c1*c2^2*e1^3*e2+2*c2^3*e0^2*e1^2+4*c2^3*e0*e1^2*e2+2*c2^3*e1^2*e2^2, 2*c0^3*e0^2*e2^2+2*c0^3*e1^4+4*c0^2*c1*e0^2*e1^2+4*c0^2*c1*e0^2*e1*e2+4*c0^2*c1*e0*e1^3+4*c0^2*c1*e0*e1*e2^2+4*c0^2*c1*e1^3*e2+4*c0^2*c1*e1^2*e2^2+c0^2*c2*e0^4+2*c0^2*c2*e0^3*e2+2*c0^2*c2*e0*e2^3+6*c0^2*c2*e1^4+c0^2*c2*e2^4+4*c0*c1^2*e0^3*e1+6*c0*c1^2*e0^2*e1^2+4*c0*c1^2*e0^2*e1*e2+8*c0*c1^2*e0*e1^3+4*c0*c1^2*e0*e1^2*e2+4*c0*c1^2*e0*e1*e2^2+8*c0*c1^2*e1^3*e2+6*c0*c1^2*e1^2*e2^2+4*c0*c1^2*e1*e2^3+8*c0*c1*c2*e0^3*e1+4*c0*c1*c2*e0^2*e1^2+8*c0*c1*c2*e0*e1^3+8*c0*c1*c2*e0*e1^2*e2+8*c0*c1*c2*e1^3*e2+4*c0*c1*c2*e1^2*e2^2+8*c0*c1*c2*e1*e2^3+c0*c2^2*e0^4+2*c0*c2^2*e0^3*e2+2*c0*c2^2*e0*e2^3+6*c0*c2^2*e1^4+c0*c2^2*e2^4+2*c1^3*e0^4+4*c1^3*e0^3*e2+4*c1^3*e0^2*e2^2+4*c1^3*e0*e2^3+16*c1^3*e1^4+2*c1^3*e2^4+4*c1^2*c2*e0^3*e1+6*c1^2*c2*e0^2*e1^2+4*c1^2*c2*e0^2*e1*e2+8*c1^2*c2*e0*e1^3+4*c1^2*c2*e0*e1^2*e2+4*c1^2*c2*e0*e1*e2^2+8*c1^2*c2*e1^3*e2+6*c1^2*c2*e1^2*e2^2+4*c1^2*c2*e1*e2^3+4*c1*c2^2*e0^2*e1^2+4*c1*c2^2*e0^2*e1*e2+4*c1*c2^2*e0*e1^3+4*c1*c2^2*e0*e1*e2^2+4*c1*c2^2*e1^3*e2+4*c1*c2^2*e1^2*e2^2+2*c2^3*e0^2*e2^2+2*c2^3*e1^4, 4*c0^3*e0^3*e1+4*c0^3*e0*e1^3+4*c0^3*e1^3*e2+4*c0^3*e1*e2^3+4*c0^2*c1*e0^4+4*c0^2*c1*e0^3*e1+4*c0^2*c1*e0^3*e2+12*c0^2*c1*e0^2*e1^2+4*c0^2*c1*e0^2*e1*e2+8*c0^2*c1*e0*e1^3+8*c0^2*c1*e0*e1^2*e2+4*c0^2*c1*e0*e1*e2^2+4*c0^2*c1*e0*e2^3+16*c0^2*c1*e1^4+8*c0^2*c1*e1^3*e2+12*c0^2*c1*e1^2*e2^2+4*c0^2*c1*e1*e2^3+4*c0^2*c1*e2^4+4*c0^2*c2*e0^3*e1+8*c0^2*c2*e0^2*e1*e2+12*c0^2*c2*e0*e1^3+8*c0^2*c2*e0*e1*e2^2+12*c0^2*c2*e1^3*e2+4*c0^2*c2*e1*e2^3+4*c0*c1^2*e0^4+8*c0*c1^2*e0^3*e1+8*c0*c1^2*e0^3*e2+24*c0*c1^2*e0^2*e1^2+8*c0*c1^2*e0^2*e1*e2+8*c0*c1^2*e0^2*e2^2+16*c0*c1^2*e0*e1^3+16*c0*c1^2*e0*e1^2*e2+8*c0*c1^2*e0*e1*e2^2+8*c0*c1^2*e0*e2^3+32*c0*c1^2*e1^4+16*c0*c1^2*e1^3*e2+24*c0*c1^2*e1^2*e2^2+8*c0*c1^2*e1*e2^3+4*c0*c1^2*e2^4+8*c0*c1*c2*e0^3*e1+8*c0*c1*c2*e0^3*e2+24*c0*c1*c2*e0^2*e1^2+8*c0*c1*c2*e0^2*e1*e2+16*c0*c1*c2*e0^2*e2^2+16*c0*c1*c2*e0*e1^3+16*c0*c1*c2*e0*e1^2*e2+8*c0*c1*c2*e0*e1*e2^2+8*c0*c1*c2*e0*e2^3+32*c0*c1*c2*e1^4+16*c0*c1*c2*e1^3*e2+24*c0*c1*c2*e1^2*e2^2+8*c0*c1*c2*e1*e2^3+4*c0*c2^2*e0^3*e1+8*c0*c2^2*e0^2*e1*e2+12*c0*c2^2*e0*e1^3+8*c0*c2^2*e0*e1*e2^2+12*c0*c2^2*e1^3*e2+4*c0*c2^2*e1*e2^3+16*c1^3*e0^3*e1+16*c1^3*e0^2*e1*e2+32*c1^3*e0*e1^3+16*c1^3*e0*e1*e2^2+32*c1^3*e1^3*e2+16*c1^3*e1*e2^3+4*c1^2*c2*e0^4+8*c1^2*c2*e0^3*e1+8*c1^2*c2*e0^3*e2+24*c1^2*c2*e0^2*e1^2+8*c1^2*c2*e0^2*e1*e2+8*c1^2*c2*e0^2*e2^2+16*c1^2*c2*e0*e1^3+16*c1^2*c2*e0*e1^2*e2+8*c1^2*c2*e0*e1*e2^2+8*c1^2*c2*e0*e2^3+32*c1^2*c2*e1^4+16*c1^2*c2*e1^3*e2+24*c1^2*c2*e1^2*e2^2+8*c1^2*c2*e1*e2^3+4*c1^2*c2*e2^4+4*c1*c2^2*e0^4+4*c1*c2^2*e0^3*e1+4*c1*c2^2*e0^3*e2+12*c1*c2^2*e0^2*e1^2+4*c1*c2^2*e0^2*e1*e2+8*c1*c2^2*e0*e1^3+8*c1*c2^2*e0*e1^2*e2+4*c1*c2^2*e0*e1*e2^2+4*c1*c2^2*e0*e2^3+16*c1*c2^2*e1^4+8*c1*c2^2*e1^3*e2+12*c1*c2^2*e1^2*e2^2+4*c1*c2^2*e1*e2^3+4*c1*c2^2*e2^4+4*c2^3*e0^3*e1+4*c2^3*e0*e1^3+4*c2^3*e1^3*e2+4*c2^3*e1*e2^3, 8*c0^3*e0^2*e1^2+8*c0^3*e1^2*e2^2+8*c0^2*c1*e0^3*e1+8*c0^2*c1*e0^2*e1^2+8*c0^2*c1*e0^2*e1*e2+16*c0^2*c1*e0*e1^3+16*c0^2*c1*e0*e1^2*e2+8*c0^2*c1*e0*e1*e2^2+16*c0^2*c1*e1^3*e2+8*c0^2*c1*e1^2*e2^2+8*c0^2*c1*e1*e2^3+8*c0^2*c2*e0^2*e1^2+32*c0^2*c2*e0*e1^2*e2+8*c0^2*c2*e1^2*e2^2+8*c0*c1^2*e0^3*e1+16*c0*c1^2*e0^2*e1^2+24*c0*c1^2*e0^2*e1*e2+32*c0*c1^2*e0*e1^3+32*c0*c1^2*e0*e1^2*e2+24*c0*c1^2*e0*e1*e2^2+32*c0*c1^2*e1^3*e2+16*c0*c1^2*e1^2*e2^2+8*c0*c1^2*e1*e2^3+16*c0*c1*c2*e0^2*e1^2+32*c0*c1*c2*e0^2*e1*e2+32*c0*c1*c2*e0*e1^3+32*c0*c1*c2*e0*e1^2*e2+32*c0*c1*c2*e0*e1*e2^2+32*c0*c1*c2*e1^3*e2+16*c0*c1*c2*e1^2*e2^2+8*c0*c2^2*e0^2*e1^2+32*c0*c2^2*e0*e1^2*e2+8*c0*c2^2*e1^2*e2^2+32*c1^3*e0^2*e1^2+64*c1^3*e0*e1^2*e2+32*c1^3*e1^2*e2^2+8*c1^2*c2*e0^3*e1+16*c1^2*c2*e0^2*e1^2+24*c1^2*c2*e0^2*e1*e2+32*c1^2*c2*e0*e1^3+32*c1^2*c2*e0*e1^2*e2+24*c1^2*c2*e0*e1*e2^2+32*c1^2*c2*e1^3*e2+16*c1^2*c2*e1^2*e2^2+8*c1^2*c2*e1*e2^3+8*c1*c2^2*e0^3*e1+8*c1*c2^2*e0^2*e1^2+8*c1*c2^2*e0^2*e1*e2+16*c1*c2^2*e0*e1^3+16*c1*c2^2*e0*e1^2*e2+8*c1*c2^2*e0*e1*e2^2+16*c1*c2^2*e1^3*e2+8*c1*c2^2*e1^2*e2^2+8*c1*c2^2*e1*e2^3+8*c2^3*e0^2*e1^2+8*c2^3*e1^2*e2^2, 8*c0^3*e0^2*e1*e2+8*c0^3*e0*e1^3+8*c0^3*e0*e1*e2^2+8*c0^3*e1^3*e2+8*c0^2*c1*e0^3*e2+8*c0^2*c1*e0^2*e1^2+16*c0^2*c1*e0^2*e1*e2+16*c0^2*c1*e0^2*e2^2+16*c0^2*c1*e0*e1^3+48*c0^2*c1*e0*e1^2*e2+16*c0^2*c1*e0*e1*e2^2+8*c0^2*c1*e0*e2^3+32*c0^2*c1*e1^4+16*c0^2*c1*e1^3*e2+8*c0^2*c1*e1^2*e2^2+24*c0^2*c2*e0^2*e1*e2+24*c0^2*c2*e0*e1^3+24*c0^2*c2*e0*e1*e2^2+24*c0^2*c2*e1^3*e2+16*c0*c1^2*e0^3*e2+16*c0*c1^2*e0^2*e1^2+32*c0*c1^2*e0^2*e1*e2+32*c0*c1^2*e0^2*e2^2+32*c0*c1^2*e0*e1^3+96*c0*c1^2*e0*e1^2*e2+32*c0*c1^2*e0*e1*e2^2+16*c0*c1^2*e0*e2^3+64*c0*c1^2*e1^4+32*c0*c1^2*e1^3*e2+16*c0*c1^2*e1^2*e2^2+16*c0*c1*c2*e0^3*e2+16*c0*c1*c2*e0^2*e1^2+32*c0*c1*c2*e0^2*e1*e2+32*c0*c1*c2*e0^2*e2^2+32*c0*c1*c2*e0*e1^3+96*c0*c1*c2*e0*e1^2*e2+32*c0*c1*c2*e0*e1*e2^2+16*c0*c1*c2*e0*e2^3+64*c0*c1*c2*e1^4+32*c0*c1*c2*e1^3*e2+16*c0*c1*c2*e1^2*e2^2+24*c0*c2^2*e0^2*e1*e2+24*c0*c2^2*e0*e1^3+24*c0*c2^2*e0*e1*e2^2+24*c0*c2^2*e1^3*e2+64*c1^3*e0^2*e1*e2+64*c1^3*e0*e1^3+64*c1^3*e0*e1*e2^2+64*c1^3*e1^3*e2+16*c1^2*c2*e0^3*e2+16*c1^2*c2*e0^2*e1^2+32*c1^2*c2*e0^2*e1*e2+32*c1^2*c2*e0^2*e2^2+32*c1^2*c2*e0*e1^3+96*c1^2*c2*e0*e1^2*e2+32*c1^2*c2*e0*e1*e2^2+16*c1^2*c2*e0*e2^3+64*c1^2*c2*e1^4+32*c1^2*c2*e1^3*e2+16*c1^2*c2*e1^2*e2^2+8*c1*c2^2*e0^3*e2+8*c1*c2^2*e0^2*e1^2+16*c1*c2^2*e0^2*e1*e2+16*c1*c2^2*e0^2*e2^2+16*c1*c2^2*e0*e1^3+48*c1*c2^2*e0*e1^2*e2+16*c1*c2^2*e0*e1*e2^2+8*c1*c2^2*e0*e2^3+32*c1*c2^2*e1^4+16*c1*c2^2*e1^3*e2+8*c1*c2^2*e1^2*e2^2+8*c2^3*e0^2*e1*e2+8*c2^3*e0*e1^3+8*c2^3*e0*e1*e2^2+8*c2^3*e1^3*e2, 8*c0^3*e0^2*e1^2+16*c0^3*e0*e1^2*e2+8*c0^3*e1^2*e2^2+8*c0^2*c1*e0^3*e1+16*c0^2*c1*e0^2*e1^2+24*c0^2*c1*e0^2*e1*e2+32*c0^2*c1*e0*e1^3+32*c0^2*c1*e0*e1^2*e2+24*c0^2*c1*e0*e1*e2^2+32*c0^2*c1*e1^3*e2+16*c0^2*c1*e1^2*e2^2+8*c0^2*c1*e1*e2^3+24*c0^2*c2*e0^2*e1^2+48*c0^2*c2*e0*e1^2*e2+24*c0^2*c2*e1^2*e2^2+16*c0*c1^2*e0^3*e1+32*c0*c1^2*e0^2*e1^2+48*c0*c1^2*e0^2*e1*e2+64*c0*c1^2*e0*e1^3+64*c0*c1^2*e0*e1^2*e2+48*c0*c1^2*e0*e1*e2^2+64*c0*c1^2*e1^3*e2+32*c0*c1^2*e1^2*e2^2+16*c0*c1^2*e1*e2^3+16*c0*c1*c2*e0^3*e1+32*c0*c1*c2*e0^2*e1^2+48*c0*c1*c2*e0^2*e1*e2+64*c0*c1*c2*e0*e1^3+64*c0*c1*c2*e0*e1^2*e2+48*c0*c1*c2*e0*e1*e2^2+64*c0*c1*c2*e1^3*e2+32*c0*c1*c2*e1^2*e2^2+16*c0*c1*c2*e1*e2^3+24*c0*c2^2*e0^2*e1^2+48*c0*c2^2*e0*e1^2*e2+24*c0*c2^2*e1^2*e2^2+64*c1^3*e0^2*e1^2+128*c1^3*e0*e1^2*e2+64*c1^3*e1^2*e2^2+16*c1^2*c2*e0^3*e1+32*c1^2*c2*e0^2*e1^2+48*c1^2*c2*e0^2*e1*e2+64*c1^2*c2*e0*e1^3+64*c1^2*c2*e0*e1^2*e2+48*c1^2*c2*e0*e1*e2^2+64*c1^2*c2*e1^3*e2+32*c1^2*c2*e1^2*e2^2+16*c1^2*c2*e1*e2^3+8*c1*c2^2*e0^3*e1+16*c1*c2^2*e0^2*e1^2+24*c1*c2^2*e0^2*e1*e2+32*c1*c2^2*e0*e1^3+32*c1*c2^2*e0*e1^2*e2+24*c1*c2^2*e0*e1*e2^2+32*c1*c2^2*e1^3*e2+16*c1*c2^2*e1^2*e2^2+8*c1*c2^2*e1*e2^3+8*c2^3*e0^2*e1^2+16*c2^3*e0*e1^2*e2+8*c2^3*e1^2*e2^2, 4*c0^3*e0^2*e1*e2+4*c0^3*e0*e1^3+4*c0^3*e0*e1*e2^2+4*c0^3*e1^3*e2+4*c0^2*c1*e0^3*e1+4*c0^2*c1*e0^3*e2+12*c0^2*c1*e0^2*e1^2+4*c0^2*c1*e0^2*e1*e2+8*c0^2*c1*e0^2*e2^2+8*c0^2*c1*e0*e1^3+8*c0^2*c1*e0*e1^2*e2+4*c0^2*c1*e0*e1*e2^2+4*c0^2*c1*e0*e2^3+16*c0^2*c1*e1^4+8*c0^2*c1*e1^3*e2+12*c0^2*c1*e1^2*e2^2+4*c0^2*c1*e1*e2^3+8*c0^2*c2*e0^3*e1+4*c0^2*c2*e0^2*e1*e2+12*c0^2*c2*e0*e1^3+4*c0^2*c2*e0*e1*e2^2+12*c0^2*c2*e1^3*e2+8*c0^2*c2*e1*e2^3+4*c0*c1^2*e0^4+8*c0*c1^2*e0^3*e1+8*c0*c1^2*e0^3*e2+24*c0*c1^2*e0^2*e1^2+8*c0*c1^2*e0^2*e1*e2+8*c0*c1^2*e0^2*e2^2+16*c0*c1^2*e0*e1^3+16*c0*c1^2*e0*e1^2*e2+8*c0*c1^2*e0*e1*e2^2+8*c0*c1^2*e0*e2^3+32*c0*c1^2*e1^4+16*c0*c1^2*e1^3*e2+24*c0*c1^2*e1^2*e2^2+8*c0*c1^2*e1*e2^3+4*c0*c1^2*e2^4+8*c0*c1*c2*e0^4+8*c0*c1*c2*e0^3*e1+8*c0*c1*c2*e0^3*e2+24*c0*c1*c2*e0^2*e1^2+8*c0*c1*c2*e0^2*e1*e2+16*c0*c1*c2*e0*e1^3+16*c0*c1*c2*e0*e1^2*e2+8*c0*c1*c2*e0*e1*e2^2+8*c0*c1*c2*e0*e2^3+32*c0*c1*c2*e1^4+16*c0*c1*c2*e1^3*e2+24*c0*c1*c2*e1^2*e2^2+8*c0*c1*c2*e1*e2^3+8*c0*c1*c2*e2^4+8*c0*c2^2*e0^3*e1+4*c0*c2^2*e0^2*e1*e2+12*c0*c2^2*e0*e1^3+4*c0*c2^2*e0*e1*e2^2+12*c0*c2^2*e1^3*e2+8*c0*c2^2*e1*e2^3+16*c1^3*e0^3*e1+16*c1^3*e0^2*e1*e2+32*c1^3*e0*e1^3+16*c1^3*e0*e1*e2^2+32*c1^3*e1^3*e2+16*c1^3*e1*e2^3+4*c1^2*c2*e0^4+8*c1^2*c2*e0^3*e1+8*c1^2*c2*e0^3*e2+24*c1^2*c2*e0^2*e1^2+8*c1^2*c2*e0^2*e1*e2+8*c1^2*c2*e0^2*e2^2+16*c1^2*c2*e0*e1^3+16*c1^2*c2*e0*e1^2*e2+8*c1^2*c2*e0*e1*e2^2+8*c1^2*c2*e0*e2^3+32*c1^2*c2*e1^4+16*c1^2*c2*e1^3*e2+24*c1^2*c2*e1^2*e2^2+8*c1^2*c2*e1*e2^3+4*c1^2*c2*e2^4+4*c1*c2^2*e0^3*e1+4*c1*c2^2*e0^3*e2+12*c1*c2^2*e0^2*e1^2+4*c1*c2^2*e0^2*e1*e2+8*c1*c2^2*e0^2*e2^2+8*c1*c2^2*e0*e1^3+8*c1*c2^2*e0*e1^2*e2+4*c1*c2^2*e0*e1*e2^2+4*c1*c2^2*e0*e2^3+16*c1*c2^2*e1^4+8*c1*c2^2*e1^3*e2+12*c1*c2^2*e1^2*e2^2+4*c1*c2^2*e1*e2^3+4*c2^3*e0^2*e1*e2+4*c2^3*e0*e1^3+4*c2^3*e0*e1*e2^2+4*c2^3*e1^3*e2, 16*c0^3*e0*e1^2*e2+8*c0^2*c1*e0^2*e1^2+16*c0^2*c1*e0^2*e1*e2+16*c0^2*c1*e0*e1^3+16*c0^2*c1*e0*e1^2*e2+16*c0^2*c1*e0*e1*e2^2+16*c0^2*c1*e1^3*e2+8*c0^2*c1*e1^2*e2^2+16*c0^2*c2*e0^2*e1^2+16*c0^2*c2*e0*e1^2*e2+16*c0^2*c2*e1^2*e2^2+8*c0*c1^2*e0^3*e1+16*c0*c1^2*e0^2*e1^2+24*c0*c1^2*e0^2*e1*e2+32*c0*c1^2*e0*e1^3+32*c0*c1^2*e0*e1^2*e2+24*c0*c1^2*e0*e1*e2^2+32*c0*c1^2*e1^3*e2+16*c0*c1^2*e1^2*e2^2+8*c0*c1^2*e1*e2^3+16*c0*c1*c2*e0^3*e1+16*c0*c1*c2*e0^2*e1^2+16*c0*c1*c2*e0^2*e1*e2+32*c0*c1*c2*e0*e1^3+32*c0*c1*c2*e0*e1^2*e2+16*c0*c1*c2*e0*e1*e2^2+32*c0*c1*c2*e1^3*e2+16*c0*c1*c2*e1^2*e2^2+16*c0*c1*c2*e1*e2^3+16*c0*c2^2*e0^2*e1^2+16*c0*c2^2*e0*e1^2*e2+16*c0*c2^2*e1^2*e2^2+32*c1^3*e0^2*e1^2+64*c1^3*e0*e1^2*e2+32*c1^3*e1^2*e2^2+8*c1^2*c2*e0^3*e1+16*c1^2*c2*e0^2*e1^2+24*c1^2*c2*e0^2*e1*e2+32*c1^2*c2*e0*e1^3+32*c1^2*c2*e0*e1^2*e2+24*c1^2*c2*e0*e1*e2^2+32*c1^2*c2*e1^3*e2+16*c1^2*c2*e1^2*e2^2+8*c1^2*c2*e1*e2^3+8*c1*c2^2*e0^2*e1^2+16*c1*c2^2*e0^2*e1*e2+16*c1*c2^2*e0*e1^3+16*c1*c2^2*e0*e1^2*e2+16*c1*c2^2*e0*e1*e2^2+16*c1*c2^2*e1^3*e2+8*c1*c2^2*e1^2*e2^2+16*c2^3*e0*e1^2*e2, 2*c0^3*e0^3*e2+2*c0^3*e0*e2^3+4*c0^3*e1^4+4*c0^2*c1*e0^3*e1+4*c0^2*c1*e0^2*e1^2+4*c0^2*c1*e0^2*e1*e2+8*c0^2*c1*e0*e1^3+8*c0^2*c1*e0*e1^2*e2+4*c0^2*c1*e0*e1*e2^2+8*c0^2*c1*e1^3*e2+4*c0^2*c1*e1^2*e2^2+4*c0^2*c1*e1*e2^3+2*c0^2*c2*e0^4+2*c0^2*c2*e0^3*e2+4*c0^2*c2*e0^2*e2^2+2*c0^2*c2*e0*e2^3+12*c0^2*c2*e1^4+2*c0^2*c2*e2^4+8*c0*c1^2*e0^3*e1+12*c0*c1^2*e0^2*e1^2+8*c0*c1^2*e0^2*e1*e2+16*c0*c1^2*e0*e1^3+8*c0*c1^2*e0*e1^2*e2+8*c0*c1^2*e0*e1*e2^2+16*c0*c1^2*e1^3*e2+12*c0*c1^2*e1^2*e2^2+8*c0*c1^2*e1*e2^3+8*c0*c1*c2*e0^3*e1+16*c0*c1*c2*e0^2*e1^2+8*c0*c1*c2*e0^2*e1*e2+16*c0*c1*c2*e0*e1^3+8*c0*c1*c2*e0*e1*e2^2+16*c0*c1*c2*e1^3*e2+16*c0*c1*c2*e1^2*e2^2+8*c0*c1*c2*e1*e2^3+2*c0*c2^2*e0^4+2*c0*c2^2*e0^3*e2+4*c0*c2^2*e0^2*e2^2+2*c0*c2^2*e0*e2^3+12*c0*c2^2*e1^4+2*c0*c2^2*e2^4+4*c1^3*e0^4+8*c1^3*e0^3*e2+8*c1^3*e0^2*e2^2+8*c1^3*e0*e2^3+32*c1^3*e1^4+4*c1^3*e2^4+8*c1^2*c2*e0^3*e1+12*c1^2*c2*e0^2*e1^2+8*c1^2*c2*e0^2*e1*e2+16*c1^2*c2*e0*e1^3+8*c1^2*c2*e0*e1^2*e2+8*c1^2*c2*e0*e1*e2^2+16*c1^2*c2*e1^3*e2+12*c1^2*c2*e1^2*e2^2+8*c1^2*c2*e1*e2^3+4*c1*c2^2*e0^3*e1+4*c1*c2^2*e0^2*e1^2+4*c1*c2^2*e0^2*e1*e2+8*c1*c2^2*e0*e1^3+8*c1*c2^2*e0*e1^2*e2+4*c1*c2^2*e0*e1*e2^2+8*c1*c2^2*e1^3*e2+4*c1*c2^2*e1^2*e2^2+4*c1*c2^2*e1*e2^3+2*c2^3*e0^3*e2+2*c2^3*e0*e2^3+4*c2^3*e1^4, 8*c0^3*e0^2*e1*e2+8*c0^3*e0*e1^3+8*c0^3*e0*e1*e2^2+8*c0^3*e1^3*e2+32*c0^2*c1*e0^2*e1^2+16*c0^2*c1*e0^2*e1*e2+16*c0^2*c1*e0*e1^3+64*c0^2*c1*e0*e1^2*e2+16*c0^2*c1*e0*e1*e2^2+16*c0^2*c1*e1^3*e2+32*c0^2*c1*e1^2*e2^2+8*c0^2*c2*e0^3*e1+16*c0^2*c2*e0^2*e1*e2+24*c0^2*c2*e0*e1^3+16*c0^2*c2*e0*e1*e2^2+24*c0^2*c2*e1^3*e2+8*c0^2*c2*e1*e2^3+8*c0*c1^2*e0^3*e1+64*c0*c1^2*e0^2*e1^2+24*c0*c1^2*e0^2*e1*e2+32*c0*c1^2*e0*e1^3+128*c0*c1^2*e0*e1^2*e2+24*c0*c1^2*e0*e1*e2^2+32*c0*c1^2*e1^3*e2+64*c0*c1^2*e1^2*e2^2+8*c0*c1^2*e1*e2^3+16*c0*c1*c2*e0^3*e1+64*c0*c1*c2*e0^2*e1^2+16*c0*c1*c2*e0^2*e1*e2+32*c0*c1*c2*e0*e1^3+128*c0*c1*c2*e0*e1^2*e2+16*c0*c1*c2*e0*e1*e2^2+32*c0*c1*c2*e1^3*e2+64*c0*c1*c2*e1^2*e2^2+16*c0*c1*c2*e1*e2^3+8*c0*c2^2*e0^3*e1+16*c0*c2^2*e0^2*e1*e2+24*c0*c2^2*e0*e1^3+16*c0*c2^2*e0*e1*e2^2+24*c0*c2^2*e1^3*e2+8*c0*c2^2*e1*e2^3+16*c1^3*e0^3*e1+48*c1^3*e0^2*e1*e2+64*c1^3*e0*e1^3+48*c1^3*e0*e1*e2^2+64*c1^3*e1^3*e2+16*c1^3*e1*e2^3+8*c1^2*c2*e0^3*e1+64*c1^2*c2*e0^2*e1^2+24*c1^2*c2*e0^2*e1*e2+32*c1^2*c2*e0*e1^3+128*c1^2*c2*e0*e1^2*e2+24*c1^2*c2*e0*e1*e2^2+32*c1^2*c2*e1^3*e2+64*c1^2*c2*e1^2*e2^2+8*c1^2*c2*e1*e2^3+32*c1*c2^2*e0^2*e1^2+16*c1*c2^2*e0^2*e1*e2+16*c1*c2^2*e0*e1^3+64*c1*c2^2*e0*e1^2*e2+16*c1*c2^2*e0*e1*e2^2+16*c1*c2^2*e1^3*e2+32*c1*c2^2*e1^2*e2^2+8*c2^3*e0^2*e1*e2+8*c2^3*e0*e1^3+8*c2^3*e0*e1*e2^2+8*c2^3*e1^3*e2, 4*c0^3*e0^2*e2^2+4*c0^3*e1^4+8*c0^2*c1*e0^2*e1*e2+8*c0^2*c1*e0*e1^3+16*c0^2*c1*e0*e1^2*e2+8*c0^2*c1*e0*e1*e2^2+8*c0^2*c1*e1^3*e2+4*c0^2*c2*e0^3*e2+4*c0^2*c2*e0^2*e2^2+4*c0^2*c2*e0*e2^3+12*c0^2*c2*e1^4+4*c0*c1^2*e0^2*e1^2+16*c0*c1^2*e0^2*e1*e2+16*c0*c1^2*e0*e1^3+24*c0*c1^2*e0*e1^2*e2+16*c0*c1^2*e0*e1*e2^2+16*c0*c1^2*e1^3*e2+4*c0*c1^2*e1^2*e2^2+8*c0*c1*c2*e0^2*e1^2+16*c0*c1*c2*e0^2*e1*e2+16*c0*c1*c2*e0*e1^3+16*c0*c1*c2*e0*e1^2*e2+16*c0*c1*c2*e0*e1*e2^2+16*c0*c1*c2*e1^3*e2+8*c0*c1*c2*e1^2*e2^2+4*c0*c2^2*e0^3*e2+4*c0*c2^2*e0^2*e2^2+4*c0*c2^2*e0*e2^3+12*c0*c2^2*e1^4+8*c1^3*e0^3*e2+16*c1^3*e0^2*e2^2+8*c1^3*e0*e2^3+32*c1^3*e1^4+4*c1^2*c2*e0^2*e1^2+16*c1^2*c2*e0^2*e1*e2+16*c1^2*c2*e0*e1^3+24*c1^2*c2*e0*e1^2*e2+16*c1^2*c2*e0*e1*e2^2+16*c1^2*c2*e1^3*e2+4*c1^2*c2*e1^2*e2^2+8*c1*c2^2*e0^2*e1*e2+8*c1*c2^2*e0*e1^3+16*c1*c2^2*e0*e1^2*e2+8*c1*c2^2*e0*e1*e2^2+8*c1*c2^2*e1^3*e2+4*c2^3*e0^2*e2^2+4*c2^3*e1^4, 2*c0^3*e0^2*e1^2+4*c0^3*e0*e1^2*e2+2*c0^3*e1^2*e2^2+4*c0^2*c1*e0^3*e1+4*c0^2*c1*e0^3*e2+4*c0^2*c1*e0^2*e1*e2+8*c0^2*c1*e0*e1^3+4*c0^2*c1*e0*e1*e2^2+4*c0^2*c1*e0*e2^3+8*c0^2*c1*e1^4+8*c0^2*c1*e1^3*e2+4*c0^2*c1*e1*e2^3+10*c0^2*c2*e0^2*e1^2+4*c0^2*c2*e0*e1^2*e2+10*c0^2*c2*e1^2*e2^2+2*c0*c1^2*e0^4+8*c0*c1^2*e0^3*e1+4*c0*c1^2*e0^3*e2+8*c0*c1^2*e0^2*e1*e2+4*c0*c1^2*e0^2*e2^2+16*c0*c1^2*e0*e1^3+8*c0*c1^2*e0*e1*e2^2+4*c0*c1^2*e0*e2^3+16*c0*c1^2*e1^4+16*c0*c1^2*e1^3*e2+8*c0*c1^2*e1*e2^3+2*c0*c1^2*e2^4+4*c0*c1*c2*e0^4+8*c0*c1*c2*e0^3*e1+8*c0*c1*c2*e0^2*e1*e2+8*c0*c1*c2*e0^2*e2^2+16*c0*c1*c2*e0*e1^3+8*c0*c1*c2*e0*e1*e2^2+16*c0*c1*c2*e1^4+16*c0*c1*c2*e1^3*e2+8*c0*c1*c2*e1*e2^3+4*c0*c1*c2*e2^4+10*c0*c2^2*e0^2*e1^2+4*c0*c2^2*e0*e1^2*e2+10*c0*c2^2*e1^2*e2^2+24*c1^3*e0^2*e1^2+16*c1^3*e0*e1^2*e2+24*c1^3*e1^2*e2^2+2*c1^2*c2*e0^4+8*c1^2*c2*e0^3*e1+4*c1^2*c2*e0^3*e2+8*c1^2*c2*e0^2*e1*e2+4*c1^2*c2*e0^2*e2^2+16*c1^2*c2*e0*e1^3+8*c1^2*c2*e0*e1*e2^2+4*c1^2*c2*e0*e2^3+16*c1^2*c2*e1^4+16*c1^2*c2*e1^3*e2+8*c1^2*c2*e1*e2^3+2*c1^2*c2*e2^4+4*c1*c2^2*e0^3*e1+4*c1*c2^2*e0^3*e2+4*c1*c2^2*e0^2*e1*e2+8*c1*c2^2*e0*e1^3+4*c1*c2^2*e0*e1*e2^2+4*c1*c2^2*e0*e2^3+8*c1*c2^2*e1^4+8*c1*c2^2*e1^3*e2+4*c1*c2^2*e1*e2^3+2*c2^3*e0^2*e1^2+4*c2^3*e0*e1^2*e2+2*c2^3*e1^2*e2^2, 8*c0^3*e0*e1^2*e2+8*c0^2*c1*e0^2*e1*e2+8*c0^2*c1*e0^2*e2^2+8*c0^2*c1*e0*e1^3+8*c0^2*c1*e0*e1*e2^2+8*c0^2*c1*e1^4+8*c0^2*c1*e1^3*e2+4*c0^2*c2*e0^2*e1^2+16*c0^2*c2*e0*e1^2*e2+4*c0^2*c2*e1^2*e2^2+4*c0*c1^2*e0^3*e2+16*c0*c1^2*e0^2*e1*e2+8*c0*c1^2*e0^2*e2^2+16*c0*c1^2*e0*e1^3+16*c0*c1^2*e0*e1*e2^2+4*c0*c1^2*e0*e2^3+16*c0*c1^2*e1^4+16*c0*c1^2*e1^3*e2+8*c0*c1*c2*e0^3*e2+16*c0*c1*c2*e0^2*e1*e2+16*c0*c1*c2*e0*e1^3+16*c0*c1*c2*e0*e1*e2^2+8*c0*c1*c2*e0*e2^3+16*c0*c1*c2*e1^4+16*c0*c1*c2*e1^3*e2+4*c0*c2^2*e0^2*e1^2+16*c0*c2^2*e0*e1^2*e2+4*c0*c2^2*e1^2*e2^2+8*c1^3*e0^2*e1^2+48*c1^3*e0*e1^2*e2+8*c1^3*e1^2*e2^2+4*c1^2*c2*e0^3*e2+16*c1^2*c2*e0^2*e1*e2+8*c1^2*c2*e0^2*e2^2+16*c1^2*c2*e0*e1^3+16*c1^2*c2*e0*e1*e2^2+4*c1^2*c2*e0*e2^3+16*c1^2*c2*e1^4+16*c1^2*c2*e1^3*e2+8*c1*c2^2*e0^2*e1*e2+8*c1*c2^2*e0^2*e2^2+8*c1*c2^2*e0*e1^3+8*c1*c2^2*e0*e1*e2^2+8*c1*c2^2*e1^4+8*c1*c2^2*e1^3*e2+8*c2^3*e0*e1^2*e2; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(2,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }