//This is the ideal Fourier invariants. ring rQ = 0,(q1,q2,q3,q4,q5),dp; ideal Invariants = q2*q4-q1*q5; // This is the inverse of the Fourier transform. matrix ptoq[6][5] = 1/8,1/8,1/4,3/8,1/8, 1/4,-1/4,0,1/4,-1/4, 1/8,1/8,-1/4,-1/8,1/8, 1/8,1/8,-1/4,1/8,-1/8, 1/4,-1/4,0,-1/4,1/4, 1/8,1/8,1/4,-3/8,-1/8; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4,p5,p6),dp; //This is the Fourier transform. matrix qtop[5][6] = 1,1,1,1,1,1, 1,-1,1,1,-1,1, 1,0,-1,-1,0,1, 1,1/3,-1/3,1/3,-1/3,-1, 1,-1,1,-1,1,-1; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(b0,b1,d0,d1,f0,f1),dp; ideal P = b0^2*d0^3*f0^4+b0^2*d0^3*f1^4+2*b0^2*d0^2*d1*f0^3*f1+2*b0^2*d0^2*d1*f0^2*f1^2+2*b0^2*d0^2*d1*f0*f1^3+2*b0^2*d0*d1^2*f0^3*f1+2*b0^2*d0*d1^2*f0^2*f1^2+2*b0^2*d0*d1^2*f0*f1^3+b0^2*d1^3*f0^4+b0^2*d1^3*f1^4+2*b0*b1*d0^3*f0^3*f1+2*b0*b1*d0^3*f0*f1^3+2*b0*b1*d0^2*d1*f0^4+2*b0*b1*d0^2*d1*f0^3*f1+4*b0*b1*d0^2*d1*f0^2*f1^2+2*b0*b1*d0^2*d1*f0*f1^3+2*b0*b1*d0^2*d1*f1^4+2*b0*b1*d0*d1^2*f0^4+2*b0*b1*d0*d1^2*f0^3*f1+4*b0*b1*d0*d1^2*f0^2*f1^2+2*b0*b1*d0*d1^2*f0*f1^3+2*b0*b1*d0*d1^2*f1^4+2*b0*b1*d1^3*f0^3*f1+2*b0*b1*d1^3*f0*f1^3+b1^2*d0^3*f0^4+b1^2*d0^3*f1^4+2*b1^2*d0^2*d1*f0^3*f1+2*b1^2*d0^2*d1*f0^2*f1^2+2*b1^2*d0^2*d1*f0*f1^3+2*b1^2*d0*d1^2*f0^3*f1+2*b1^2*d0*d1^2*f0^2*f1^2+2*b1^2*d0*d1^2*f0*f1^3+b1^2*d1^3*f0^4+b1^2*d1^3*f1^4, 2*b0^2*d0^3*f0^3*f1+2*b0^2*d0^3*f0*f1^3+2*b0^2*d0^2*d1*f0^3*f1+8*b0^2*d0^2*d1*f0^2*f1^2+2*b0^2*d0^2*d1*f0*f1^3+2*b0^2*d0*d1^2*f0^3*f1+8*b0^2*d0*d1^2*f0^2*f1^2+2*b0^2*d0*d1^2*f0*f1^3+2*b0^2*d1^3*f0^3*f1+2*b0^2*d1^3*f0*f1^3+8*b0*b1*d0^3*f0^2*f1^2+8*b0*b1*d0^2*d1*f0^3*f1+8*b0*b1*d0^2*d1*f0^2*f1^2+8*b0*b1*d0^2*d1*f0*f1^3+8*b0*b1*d0*d1^2*f0^3*f1+8*b0*b1*d0*d1^2*f0^2*f1^2+8*b0*b1*d0*d1^2*f0*f1^3+8*b0*b1*d1^3*f0^2*f1^2+2*b1^2*d0^3*f0^3*f1+2*b1^2*d0^3*f0*f1^3+2*b1^2*d0^2*d1*f0^3*f1+8*b1^2*d0^2*d1*f0^2*f1^2+2*b1^2*d0^2*d1*f0*f1^3+2*b1^2*d0*d1^2*f0^3*f1+8*b1^2*d0*d1^2*f0^2*f1^2+2*b1^2*d0*d1^2*f0*f1^3+2*b1^2*d1^3*f0^3*f1+2*b1^2*d1^3*f0*f1^3, 2*b0^2*d0^3*f0^2*f1^2+b0^2*d0^2*d1*f0^4+2*b0^2*d0^2*d1*f0^3*f1+2*b0^2*d0^2*d1*f0*f1^3+b0^2*d0^2*d1*f1^4+b0^2*d0*d1^2*f0^4+2*b0^2*d0*d1^2*f0^3*f1+2*b0^2*d0*d1^2*f0*f1^3+b0^2*d0*d1^2*f1^4+2*b0^2*d1^3*f0^2*f1^2+2*b0*b1*d0^3*f0^3*f1+2*b0*b1*d0^3*f0*f1^3+2*b0*b1*d0^2*d1*f0^4+2*b0*b1*d0^2*d1*f0^3*f1+4*b0*b1*d0^2*d1*f0^2*f1^2+2*b0*b1*d0^2*d1*f0*f1^3+2*b0*b1*d0^2*d1*f1^4+2*b0*b1*d0*d1^2*f0^4+2*b0*b1*d0*d1^2*f0^3*f1+4*b0*b1*d0*d1^2*f0^2*f1^2+2*b0*b1*d0*d1^2*f0*f1^3+2*b0*b1*d0*d1^2*f1^4+2*b0*b1*d1^3*f0^3*f1+2*b0*b1*d1^3*f0*f1^3+2*b1^2*d0^3*f0^2*f1^2+b1^2*d0^2*d1*f0^4+2*b1^2*d0^2*d1*f0^3*f1+2*b1^2*d0^2*d1*f0*f1^3+b1^2*d0^2*d1*f1^4+b1^2*d0*d1^2*f0^4+2*b1^2*d0*d1^2*f0^3*f1+2*b1^2*d0*d1^2*f0*f1^3+b1^2*d0*d1^2*f1^4+2*b1^2*d1^3*f0^2*f1^2, b0^2*d0^3*f0^3*f1+b0^2*d0^3*f0*f1^3+b0^2*d0^2*d1*f0^4+b0^2*d0^2*d1*f0^3*f1+2*b0^2*d0^2*d1*f0^2*f1^2+b0^2*d0^2*d1*f0*f1^3+b0^2*d0^2*d1*f1^4+b0^2*d0*d1^2*f0^4+b0^2*d0*d1^2*f0^3*f1+2*b0^2*d0*d1^2*f0^2*f1^2+b0^2*d0*d1^2*f0*f1^3+b0^2*d0*d1^2*f1^4+b0^2*d1^3*f0^3*f1+b0^2*d1^3*f0*f1^3+4*b0*b1*d0^3*f0^2*f1^2+2*b0*b1*d0^2*d1*f0^4+4*b0*b1*d0^2*d1*f0^3*f1+4*b0*b1*d0^2*d1*f0*f1^3+2*b0*b1*d0^2*d1*f1^4+2*b0*b1*d0*d1^2*f0^4+4*b0*b1*d0*d1^2*f0^3*f1+4*b0*b1*d0*d1^2*f0*f1^3+2*b0*b1*d0*d1^2*f1^4+4*b0*b1*d1^3*f0^2*f1^2+b1^2*d0^3*f0^3*f1+b1^2*d0^3*f0*f1^3+b1^2*d0^2*d1*f0^4+b1^2*d0^2*d1*f0^3*f1+2*b1^2*d0^2*d1*f0^2*f1^2+b1^2*d0^2*d1*f0*f1^3+b1^2*d0^2*d1*f1^4+b1^2*d0*d1^2*f0^4+b1^2*d0*d1^2*f0^3*f1+2*b1^2*d0*d1^2*f0^2*f1^2+b1^2*d0*d1^2*f0*f1^3+b1^2*d0*d1^2*f1^4+b1^2*d1^3*f0^3*f1+b1^2*d1^3*f0*f1^3, 4*b0^2*d0^3*f0^2*f1^2+4*b0^2*d0^2*d1*f0^3*f1+4*b0^2*d0^2*d1*f0^2*f1^2+4*b0^2*d0^2*d1*f0*f1^3+4*b0^2*d0*d1^2*f0^3*f1+4*b0^2*d0*d1^2*f0^2*f1^2+4*b0^2*d0*d1^2*f0*f1^3+4*b0^2*d1^3*f0^2*f1^2+4*b0*b1*d0^3*f0^3*f1+4*b0*b1*d0^3*f0*f1^3+4*b0*b1*d0^2*d1*f0^3*f1+16*b0*b1*d0^2*d1*f0^2*f1^2+4*b0*b1*d0^2*d1*f0*f1^3+4*b0*b1*d0*d1^2*f0^3*f1+16*b0*b1*d0*d1^2*f0^2*f1^2+4*b0*b1*d0*d1^2*f0*f1^3+4*b0*b1*d1^3*f0^3*f1+4*b0*b1*d1^3*f0*f1^3+4*b1^2*d0^3*f0^2*f1^2+4*b1^2*d0^2*d1*f0^3*f1+4*b1^2*d0^2*d1*f0^2*f1^2+4*b1^2*d0^2*d1*f0*f1^3+4*b1^2*d0*d1^2*f0^3*f1+4*b1^2*d0*d1^2*f0^2*f1^2+4*b1^2*d0*d1^2*f0*f1^3+4*b1^2*d1^3*f0^2*f1^2, b0^2*d0^3*f0^3*f1+b0^2*d0^3*f0*f1^3+b0^2*d0^2*d1*f0^4+b0^2*d0^2*d1*f0^3*f1+2*b0^2*d0^2*d1*f0^2*f1^2+b0^2*d0^2*d1*f0*f1^3+b0^2*d0^2*d1*f1^4+b0^2*d0*d1^2*f0^4+b0^2*d0*d1^2*f0^3*f1+2*b0^2*d0*d1^2*f0^2*f1^2+b0^2*d0*d1^2*f0*f1^3+b0^2*d0*d1^2*f1^4+b0^2*d1^3*f0^3*f1+b0^2*d1^3*f0*f1^3+2*b0*b1*d0^3*f0^4+2*b0*b1*d0^3*f1^4+4*b0*b1*d0^2*d1*f0^3*f1+4*b0*b1*d0^2*d1*f0^2*f1^2+4*b0*b1*d0^2*d1*f0*f1^3+4*b0*b1*d0*d1^2*f0^3*f1+4*b0*b1*d0*d1^2*f0^2*f1^2+4*b0*b1*d0*d1^2*f0*f1^3+2*b0*b1*d1^3*f0^4+2*b0*b1*d1^3*f1^4+b1^2*d0^3*f0^3*f1+b1^2*d0^3*f0*f1^3+b1^2*d0^2*d1*f0^4+b1^2*d0^2*d1*f0^3*f1+2*b1^2*d0^2*d1*f0^2*f1^2+b1^2*d0^2*d1*f0*f1^3+b1^2*d0^2*d1*f1^4+b1^2*d0*d1^2*f0^4+b1^2*d0*d1^2*f0^3*f1+2*b1^2*d0*d1^2*f0^2*f1^2+b1^2*d0*d1^2*f0*f1^3+b1^2*d0*d1^2*f1^4+b1^2*d1^3*f0^3*f1+b1^2*d1^3*f0*f1^3; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(0,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }