//This is the ideal Fourier invariants. ring rQ = 0,(q1,q2,q3),dp; ideal Invariants = q2^2-q1*q3; // This is the inverse of the Fourier transform. matrix ptoq[3][3] = 1/8,3/4,1/8, 1/2,0,-1/2, 3/8,-3/4,3/8; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3),dp; //This is the Fourier transform. matrix qtop[3][3] = 1,1,1, 1,0,-1/3, 1,-1,1; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(d0,d1),dp; ideal P = d0^4+d1^4, 4*d0^3*d1+4*d0*d1^3, 6*d0^2*d1^2; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(0,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }