//This is the ideal Fourier invariants. ring rQ = 0,(q1,q2,q3,q4),dp; ideal Invariants = q3^2-q2*q4, q2^2-q1*q4; // This is the inverse of the Fourier transform. matrix ptoq[5][4] = 1/64,9/32,3/8,21/64, 3/16,9/8,0,-21/16, 9/64,9/32,-9/8,45/64, 9/16,-9/8,0,9/16, 3/32,-9/16,3/4,-9/32; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4,p5),dp; //This is the Fourier transform. matrix qtop[4][5] = 1,1,1,1,1, 1,1/3,1/9,-1/9,-1/3, 1,0,-1/3,0,1/3, 1,-1/3,5/21,1/21,-1/7; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(d0,d1),dp; ideal P = d0^4+3*d1^4, 12*d0^3*d1+12*d0*d1^3+24*d1^4, 18*d0^2*d1^2+18*d1^4, 36*d0^2*d1^2+72*d0*d1^3+36*d1^4, 24*d0*d1^3; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(1,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }