//This is the ideal Fourier invariants. ring rQ = 0,(q1,q2,q3),dp; ideal Invariants = q2^3-q1*q3^2; // This is the inverse of the Fourier transform. matrix ptoq[3][3] = 1/16,9/16,3/8, 9/16,9/16,-9/8, 3/8,-9/8,3/4; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3),dp; //This is the Fourier transform. matrix qtop[3][3] = 1,1,1, 1,1/9,-1/3, 1,-1/3,1/3; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(c0,c1),dp; ideal P = c0^3+3*c1^3, 9*c0^2*c1+9*c0*c1^2+18*c1^3, 18*c0*c1^2+6*c1^3; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(1,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }