//This is the ideal Fourier invariants. ring rQ = 0,(q1,q2,q3,q4,q5,q6,q7,q8),dp; ideal Invariants = q4*q5-q3*q6, q4*q5-q2*q7, q4*q5-q1*q8; // This is the inverse of the Fourier transform. matrix ptoq[8][8] = 1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8, 1/8,-1/8,-1/8,1/8,-1/8,1/8,1/8,-1/8, 1/8,-1/8,1/8,-1/8,1/8,-1/8,1/8,-1/8, 1/8,1/8,-1/8,-1/8,-1/8,-1/8,1/8,1/8, 1/8,1/8,-1/8,-1/8,1/8,1/8,-1/8,-1/8, 1/8,-1/8,1/8,-1/8,-1/8,1/8,-1/8,1/8, 1/8,-1/8,-1/8,1/8,1/8,-1/8,-1/8,1/8, 1/8,1/8,1/8,1/8,-1/8,-1/8,-1/8,-1/8; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4,p5,p6,p7,p8),dp; //This is the Fourier transform. matrix qtop[8][8] = 1,1,1,1,1,1,1,1, 1,-1,-1,1,1,-1,-1,1, 1,-1,1,-1,-1,1,-1,1, 1,1,-1,-1,-1,-1,1,1, 1,-1,1,-1,1,-1,1,-1, 1,1,-1,-1,1,1,-1,-1, 1,1,1,1,-1,-1,-1,-1, 1,-1,-1,1,-1,1,1,-1; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(a0,a1,b0,b1,c0,c1,d0,d1),dp; ideal P = a0*b0*c0*d0+a1*b1*c1*d1, a0*b1*c0*d0+a1*b0*c1*d1, a0*b0*c0*d1+a1*b1*c1*d0, a0*b1*c0*d1+a1*b0*c1*d0, a0*b0*c1*d0+a1*b1*c0*d1, a0*b1*c1*d0+a1*b0*c0*d1, a0*b0*c1*d1+a1*b1*c0*d0, a0*b1*c1*d1+a1*b0*c0*d0; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(0,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }