//This is the ideal of Fourier invariants. ring rQ = 0,(q1,q2,q3,q4),dp; ideal Invariants = 0; //This is the inverse of the Fourier transform. matrix ptoq[4][4] = 1/4,1/4,1/4,1/4, 1/4,-1/4,-1/4,1/4, 1/4,-1/4,1/4,-1/4, 1/4,1/4,-1/4,-1/4; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4),dp; //This is the Fourier transform. matrix qtop[4][4] = 1,1,1,1, 1,-1,-1,1, 1,-1,1,-1, 1,1,-1,-1; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(a0,a1,b0,b1,c0,c1),dp; ideal P = a0*b0*c0+a1*b1*c1, a0*b1*c1+a1*b0*c0, a0*b0*c1+a1*b1*c0, a0*b1*c0+a1*b0*c1; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(0,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }