//This is the ideal Fourier invariants. ring rQ = 0,(q1,q2,q3,q4,q5,q6,q7,q8,q9,q10),dp; ideal Invariants = q1*q6*q9-q2*q4*q10, q3*q5*q9-q2*q7*q10, q5*q6*q8-q4*q7*q10, q2*q6*q8-q3*q4*q9, q2*q5*q8-q1*q7*q9, q3*q4*q5-q1*q6*q7, q1*q3*q9^2-q2^2*q8*q10, q1*q6^2*q8-q3*q4^2*q10, q3*q5^2*q8-q1*q7^2*q10; //This is the inverse of the Fourier transform. matrix ptoq[10][10] = 1/16,1/8,1/16,1/8,1/8,1/8,1/8,1/16,1/8,1/16, 1/8,0,-1/8,0,1/4,0,-1/4,-1/8,0,1/8, 1/16,-1/8,1/16,-1/8,1/8,-1/8,1/8,1/16,-1/8,1/16, 1/8,0,-1/8,1/4,0,-1/4,0,1/8,0,-1/8, 1/8,1/4,1/8,0,0,0,0,-1/8,-1/4,-1/8, 1/8,0,-1/8,-1/4,0,1/4,0,1/8,0,-1/8, 1/8,-1/4,1/8,0,0,0,0,-1/8,1/4,-1/8, 1/16,-1/8,1/16,1/8,-1/8,1/8,-1/8,1/16,-1/8,1/16, 1/8,0,-1/8,0,-1/4,0,1/4,-1/8,0,1/8, 1/16,1/8,1/16,-1/8,-1/8,-1/8,-1/8,1/16,1/8,1/16; // This is the ring of probability distributions. ring rP = 0,(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10),dp; //This is the Fourier transform. matrix qtop[10][10] = 1,1,1,1,1,1,1,1,1,1, 1,0,-1,0,1,0,-1,-1,0,1, 1,-1,1,-1,1,-1,1,1,-1,1, 1,0,-1,1,0,-1,0,1,0,-1, 1,1,1,0,0,0,0,-1,-1,-1, 1,0,-1,-1,0,1,0,1,0,-1, 1,-1,1,0,0,0,0,-1,1,-1, 1,-1,1,1,-1,1,-1,1,-1,1, 1,0,-1,0,-1,0,1,-1,0,1, 1,1,1,-1,-1,-1,-1,1,1,1; ideal Fourier = qtop*transpose(maxideal(1)); // This is the list of polynomial invariants. map F = rQ, Fourier; ideal PInvariants = F(Invariants); // This is the polynomial parametrization. ring r = 0,(a0,a1,a2,b0,b1,b2,c0,c1,c2),dp; ideal P = a0*b0*c0+2*a1*b1*c1+a2*b2*c2, 2*a0*b1*c1+2*a1*b0*c0+2*a1*b2*c2+2*a2*b1*c1, a0*b2*c2+2*a1*b1*c1+a2*b0*c0, 2*a0*b0*c1+2*a1*b1*c0+2*a1*b1*c2+2*a2*b2*c1, 2*a0*b1*c0+2*a1*b0*c1+2*a1*b2*c1+2*a2*b1*c2, 2*a0*b2*c1+2*a1*b1*c0+2*a1*b1*c2+2*a2*b0*c1, 2*a0*b1*c2+2*a1*b0*c1+2*a1*b2*c1+2*a2*b1*c0, a0*b0*c2+2*a1*b1*c1+a2*b2*c0, 2*a0*b1*c1+2*a1*b0*c2+2*a1*b2*c0+2*a2*b1*c1, a0*b2*c0+2*a1*b1*c1+a2*b0*c2; // This checks that the polynomial parametrization // lies on the probability simplex. // It requires suma.sing. Most likely, you should // change the directory where you saved this file. // If you do have this file, you should uncomment // the following two lines. // < "/home/lgp/singular/suma.sing"; // Suma(Substitute(2,P)); // This checks that the PInvariants vanish at // the polynomial parametrization. map Evaluate = rP, P; // The following command takes a lot of space and time to // finish for larger models. // ideal Z = Evaluate(PInvariants); setring rP; ideal Z; int i; for (i=1; i<= size(PInvariants); i++) { i; Z = PInvariants[i]; setring r; Evaluate(Z); setring rP; }