restart; with(LinearAlgebra): # Define indeterminates QParam := [q1,q2,q3,q4,q5]: PParam := Matrix([[p1],[p2],[p3],[p4],[p5]]): # Special Fourier parameterization and inverse F := Matrix([[1,1,1,1,1], [1,0,-1/3,0,1], [1,-1,1,-1,1], [1,1/2,0,-1/2,-1], [1,-1/2,0,1/2,-1]]): FI := Matrix([ [1/16,3/8,1/16,1/4,1/4], [1/4,0,-1/4,1/2,-1/2], [3/8,-3/4,3/8,0,0], [1/4,0,-1/4,-1/2,1/2], [1/16,3/8,1/16,-1/4,-1/4] ]): # List of polynomial parametrizations P0 := [ b0^2*f0^5+b0^2*f1^5+2*b0*b1*f0^4*f1+2*b0*b1*f0*f1^4+b1^2*f0^5+b1^2*f1^5, 4*b0^2*f0^4*f1+4*b0^2*f0*f1^4+8*b0*b1*f0^3*f1^2+8*b0*b1*f0^2*f1^3+4*b1^2*f0^4*f1+4*b1^2*f0*f1^4, 6*b0^2*f0^3*f1^2+6*b0^2*f0^2*f1^3+12*b0*b1*f0^3*f1^2+12*b0*b1*f0^2*f1^3+6*b1^2*f0^3*f1^2+6*b1^2*f0^2*f1^3, 4*b0^2*f0^3*f1^2+4*b0^2*f0^2*f1^3+8*b0*b1*f0^4*f1+8*b0*b1*f0*f1^4+4*b1^2*f0^3*f1^2+4*b1^2*f0^2*f1^3, b0^2*f0^4*f1+b0^2*f0*f1^4+2*b0*b1*f0^5+2*b0*b1*f1^5+b1^2*f0^4*f1+b1^2*f0*f1^4]: # Substitutions based on the model P := P0: P := subs(b0 = 1-b1, P): P := subs(f0 = 1-f1, P): # Check that the polynomial parametrization lies in the probability simplex suma := 0: for i from 1 to nops(P) do suma := suma + P[i]: od: normal(expand(suma)); # Ideal of Invariants in Fourier coordinates Invariants := Matrix([ q3*q4-q2*q5, q2*q4-q1*q5, q2^2-q1*q3 ]): # Ideal of Invariants in probability coordinates Fourier := MatrixMatrixMultiply(F,PParam): PInvariants := Invariants: for i from 1 to nops(QParam) do PInvariants := subs(QParam[i] = Fourier[i, 1], PInvariants): od: # Evaluation of Invariants at the polynomial/rational parametrization num := op(PInvariants[1,1..-1])[1]: for j from 1 to num do coordpoly := PInvariants[1, j]: for i from 1 to op(PParam[1..-1,1])[1] do coordpoly := subs(PParam[i, 1] = P0[i], coordpoly): od: coordpoly :=expand(coordpoly): lprint(j,coordpoly); od: