restart; with(LinearAlgebra): # Define indeterminates QParam := [q1,q2,q3,q4]: PParam := Matrix([[p1],[p2],[p3],[p4]]): # Special Fourier parameterization and inverse F := Matrix([ [1,1,1,1], [1,-1/3,-1/3,1], [1,1/3,-1/3,-1], [1,-1,1,-1]]): FI := Matrix([ [1/8,3/8,3/8,1/8], [3/8,-3/8,3/8,-3/8], [3/8,-3/8,-3/8,3/8], [1/8,3/8,-3/8,-1/8]]): # List of polynomial parametrizations P0 := [ b0^2*e0^4+b0^2*e1^4+2*b0*b1*e0^3*e1+2*b0*b1*e0*e1^3+b1^2*e0^4+b1^2*e1^4, 3*b0^2*e0^3*e1+3*b0^2*e0*e1^3+12*b0*b1*e0^2*e1^2+3*b1^2*e0^3*e1+3*b1^2*e0*e1^3, 6*b0^2*e0^2*e1^2+6*b0*b1*e0^3*e1+6*b0*b1*e0*e1^3+6*b1^2*e0^2*e1^2, b0^2*e0^3*e1+b0^2*e0*e1^3+2*b0*b1*e0^4+2*b0*b1*e1^4+b1^2*e0^3*e1+b1^2*e0*e1^3]: # Substitutions based on the model P := P0: P := subs(b0 = 1-b1, P): P := subs(e0 = 1-e1, P): # Check that the polynomial parametrization lies in the probability simplex suma := 0: for i from 1 to nops(P) do suma := suma + P[i]: od: normal(expand(suma)); # Ideal of Invariants in Fourier coordinates Invariants := Matrix([ q2*q3-q1*q4]): # Ideal of Invariants in probability coordinates Fourier := MatrixMatrixMultiply(F,PParam): PInvariants := Invariants: for i from 1 to nops(QParam) do PInvariants := subs(QParam[i] = Fourier[i, 1], PInvariants): od: # Evaluation of Invariants at the polynomial/rational parametrization num := op(PInvariants[1,1..-1])[1]: for j from 1 to num do coordpoly := PInvariants[1, j]: for i from 1 to op(PParam[1..-1,1])[1] do coordpoly := subs(PParam[i, 1] = P0[i], coordpoly): od: coordpoly :=expand(coordpoly): lprint(j,coordpoly); od: