restart; with(LinearAlgebra): # Define indeterminates QParam := [q1,q2,q3]: PParam := Matrix([[p1],[p2],[p3]]): # Special Fourier parameterization and inverse F := Matrix([ [1,1,1], [1,0,-1/3], [1,-1,1]]): FI := Matrix([ [1/8,3/4,1/8], [1/2,0,-1/2], [3/8,-3/4,3/8]]): # List of polynomial parametrizations P0 := [ d0^4+d1^4, 4*d0^3*d1+4*d0*d1^3, 6*d0^2*d1^2]: # Substitutions based on the model P := P0: P := subs(d0 = 1-d1, P): # Check that the polynomial parametrization lies in the probability simplex suma := 0: for i from 1 to nops(P) do suma := suma + P[i]: od: normal(expand(suma)); # Ideal of Invariants in Fourier coordinates Invariants := Matrix([ q2^2-q1*q3]): # Ideal of Invariants in probability coordinates Fourier := MatrixMatrixMultiply(F,PParam): PInvariants := Invariants: for i from 1 to nops(QParam) do PInvariants := subs(QParam[i] = Fourier[i, 1], PInvariants): od: # Evaluation of Invariants at the polynomial/rational parametrization num := op(PInvariants[1,1..-1])[1]: for j from 1 to num do coordpoly := PInvariants[1, j]: for i from 1 to op(PParam[1..-1,1])[1] do coordpoly := subs(PParam[i, 1] = P0[i], coordpoly): od: coordpoly :=expand(coordpoly): lprint(j,coordpoly); od: