restart; with(LinearAlgebra): # Define indeterminates QParam := [q1,q2,q3,q4]: PParam := Matrix([[p1],[p2],[p3],[p4],[p5]]): # Special Fourier parameterization and inverse F := Matrix([ [1,1,1,1,1], [1,1/3,1/9,-1/9,-1/3], [1,0,-1/3,0,1/3], [1,-1/3,5/21,1/21,-1/7]]): FI := Matrix([ [1/64,9/32,3/8,21/64], [3/16,9/8,0,-21/16], [9/64,9/32,-9/8,45/64], [9/16,-9/8,0,9/16], [3/32,-9/16,3/4,-9/32]]): # List of polynomial parametrizations P0 := [ d0^4+3*d1^4, 12*d0^3*d1+12*d0*d1^3+24*d1^4, 18*d0^2*d1^2+18*d1^4, 36*d0^2*d1^2+72*d0*d1^3+36*d1^4, 24*d0*d1^3]: # Substitutions based on the model P := P0: P := subs(d0 = 1-3*d1, P): # Check that the polynomial parametrization lies in the probability simplex suma := 0: for i from 1 to nops(P) do suma := suma + P[i]: od: normal(expand(suma)); # Ideal of Invariants in Fourier coordinates Invariants := Matrix([ q3^2-q2*q4, q2^2-q1*q4]): # Ideal of Invariants in probability coordinates Fourier := MatrixMatrixMultiply(F,PParam): PInvariants := Invariants: for i from 1 to nops(QParam) do PInvariants := subs(QParam[i] = Fourier[i, 1], PInvariants): od: # Evaluation of Invariants at the polynomial/rational parametrization num := op(PInvariants[1,1..-1])[1]: for j from 1 to num do coordpoly := PInvariants[1, j]: for i from 1 to op(PParam[1..-1,1])[1] do coordpoly := subs(PParam[i, 1] = P0[i], coordpoly): od: coordpoly :=expand(coordpoly): lprint(j,coordpoly); od: