restart; with(LinearAlgebra): # Define indeterminates QParam := [q1,q2,q3]: PParam := Matrix([[p1],[p2],[p3]]): # Special Fourier parameterization and inverse F := Matrix([ [1,1,1], [1,-1,1], [1,0,-1]]): FI := Matrix([ [1/4,1/4,1/2], [1/2,-1/2,0], [1/4,1/4,-1/2]]): # List of polynomial parametrizations P0 := [ b0^2*d0^3+b0^2*d1^3+2*b0*b1*d0^2*d1+2*b0*b1*d0*d1^2+b1^2*d0^3+b1^2*d1^3, 2*b0^2*d0^2*d1+2*b0^2*d0*d1^2+4*b0*b1*d0^2*d1+4*b0*b1*d0*d1^2+2*b1^2*d0^2*d1+2*b1^2*d0*d1^2, b0^2*d0^2*d1+b0^2*d0*d1^2+2*b0*b1*d0^3+2*b0*b1*d1^3+b1^2*d0^2*d1+b1^2*d0*d1^2]: # Substitutions based on the model P := P0: P := subs(b0 = 1-b1, P): P := subs(d0 = 1-d1, P): # Check that the polynomial parametrization lies in the probability simplex suma := 0: for i from 1 to nops(P) do suma := suma + P[i]: od: normal(expand(suma)); # Ideal of Invariants in Fourier coordinates Invariants := Matrix([ ]): # Ideal of Invariants in probability coordinates Fourier := MatrixMatrixMultiply(F,PParam): PInvariants := Invariants: for i from 1 to nops(QParam) do PInvariants := subs(QParam[i] = Fourier[i, 1], PInvariants): od: # Evaluation of Invariants at the polynomial/rational parametrization num := op(PInvariants[1,1..-1])[1]: for j from 1 to num do coordpoly := PInvariants[1, j]: for i from 1 to op(PParam[1..-1,1])[1] do coordpoly := subs(PParam[i, 1] = P0[i], coordpoly): od: coordpoly :=expand(coordpoly): lprint(j,coordpoly); od: