restart; with(LinearAlgebra): # Define indeterminates QParam := [q1,q2,q3,q4]: PParam := Matrix([[p1],[p2],[p3],[p4]]): # Special Fourier parameterization and inverse F := Matrix([ [1,1,1,1], [1,1/3,-1/3,-1/3], [1,-1/3,1,-1/3], [1,-1/3,-1/3,1/3]]): FI := Matrix([ [1/16,3/8,3/16,3/8], [3/8,3/4,-3/8,-3/4], [3/16,-3/8,9/16,-3/8], [3/8,-3/4,-3/8,3/4]]): # List of polynomial parametrizations P0 := [ c0^3+2*c1^3+c2^3, 6*c0^2*c1+6*c0*c1^2+6*c1^2*c2+6*c1*c2^2, 3*c0^2*c2+3*c0*c2^2+6*c1^3, 6*c0*c1^2+12*c0*c1*c2+6*c1^2*c2]: # Substitutions based on the model P := P0: P := subs(c0 = 1-2*c1-c2, P): # Check that the polynomial parametrization lies in the probability simplex suma := 0: for i from 1 to nops(P) do suma := suma + P[i]: od: normal(expand(suma)); # Ideal of Invariants in Fourier coordinates Invariants := Matrix([ q2^2*q3-q1*q4^2 ]): # Ideal of Invariants in probability coordinates Fourier := MatrixMatrixMultiply(F,PParam): PInvariants := Invariants: for i from 1 to nops(QParam) do PInvariants := subs(QParam[i] = Fourier[i, 1], PInvariants): od: # Evaluation of Invariants at the polynomial/rational parametrization num := op(PInvariants[1,1..-1])[1]: for j from 1 to num do coordpoly := PInvariants[1, j]: for i from 1 to op(PParam[1..-1,1])[1] do coordpoly := subs(PParam[i, 1] = P0[i], coordpoly): od: coordpoly :=expand(coordpoly): lprint(j,coordpoly); od: