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Background



Factorials: Definition & Examples

For any positive integer n:

n! = n · (n − 1) · (n − 2) · · · 2 · 1

Examples:

1! = 1
2! = 2 · 1
3! = 3 · 2 · 1

...
...

By convention: 0! = 1



Binomial Coefficients: Definition & Examples

For integers n and k with 0 ≤ k ≤ n:

(
n
k

)
=

n!
k !(n − k)!

Examples:(
4
2

)
=

4!
2!2!

=
24

2 · 2
= 6

(
3
0

)
=

3!
0!3!

=
6

1 · 6
= 1



Binomial Coefficients: Interpretation

(n
k

)
= the # of ways to choose a subset with k elements from a

set with n elements

Equivalently:(n
k

)
= the # of k -element subsets that can be formed from a set

with n elements



Binomial Coefficients: An Example

S =

 , , ,


Subsets of S with 2 elements:{

,

} {
,

} {
,

}
{

,

} {
,

} {
,

}

(
4
2

)
=

4!
2!2!

=
24

2 · 2
= 6 = # of subsets of S with 2 elements X



Pascal’s Triangle



Pascal’s Triangle
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Pascal’s Triangle
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Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
...

...



Our First Identity



Pascal’s Triangle: Sums of Adjacent Terms
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Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
...

...

· · ·
(n−1

k−1

) (n−1
k

)
· · ·(n

k

)



Identity

(
n − 1
k − 1

)
+

(
n − 1

k

)
=

(
n
k

)



Combinatorial Proof

Consider the set S = {1,2,3,4, . . . ,n}

Plan: Count the # of subsets of S with k elements in two
different ways.



Combinatorial Proof

1st way to count the # of subsets of S with k elements:

Total # of k -element
subsets of S =

(
n
k

)



Combinatorial Proof

2nd way to count the # of subsets of S with k elements:

Observation: Each subset of S either contains the element n or
it doesn’t.

Total # of k -element
subsets of S = # of k -element subsets

of S that contain n + # of k -element subsets
of S that don’t contain n



Combinatorial Proof

To form a k -element subset that contains n:

Put n into the subset. There’s only 1 way to do this.
Choose k − 1 other elements from {1,2,3, . . . ,n − 1}
There are

(n−1
k−1

)
ways to do this.

=⇒ There are
(n−1

k−1

)
k -element subsets that contain n.

To form a k -element subset that doesn’t contain n:

Choose k elements from {1,2,3, . . . ,n − 1}
There are

(n−1
k

)
ways to do this.

=⇒ There are
(n−1

k

)
k -element subsets that don’t contain n.



Combinatorial Proof

Total # of k -element
subsets of S = # of k -element subsets

of S that contain n + # of k -element subsets
of S that don’t contain n

Total # of k -element
subsets of S =

(
n − 1
k − 1

)
+

(
n − 1

k

)



In Summary:

1st way: Total # of k -element
subsets of S =

(
n
k

)

2nd way: Total # of k -element
subsets of S =

(
n − 1
k − 1

)
+

(
n − 1

k

)

=⇒
(

n − 1
k − 1

)
+

(
n − 1

k

)
=

(
n
k

)



Our Second Identity
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Pascal’s Triangle: The Sums of the Rows

1 1
1 1 2

1 2 1 4
1 3 3 1 8

1 4 6 4 1 16
1 5 10 10 5 1 32

1 6 15 20 15 6 1 64
1 7 21 35 35 21 7 1 128
...

...



Pascal’s Triangle: The Sums of the Rows

1 1 = 20

1 1 2 = 21

1 2 1 4 = 22

1 3 3 1 8 = 23

1 4 6 4 1 16 = 24

1 5 10 10 5 1 32 = 25

1 6 15 20 15 6 1 64 = 26

1 7 21 35 35 21 7 1 128 = 27

...
...
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Another Identity

(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n

n − 2

)
+

(
n

n − 1

)
+

(
n
n

)
= 2n



Combinatorial Proof:

Again, consider the set S = {1,2,3, . . . ,n}.

Plan: Count the total number of subsets of S in two different
ways.



Combinatorial Proof:

1st way of counting the subsets of S:

# of
subsets
w/ no

elements

+

# of
subsets

w/ 1
element

+

# of
subsets

w/ 2
elements

+ · · ·+

# of
subsets
w/ n-1

elements

+

# of
subsets

w/ n
elements(n

0

)
+

(n
1

)
+

(n
2

)
+ · · ·+

( n
n−1

)
+

(n
n

)



Combinatorial Proof:

2nd way of counting the subsets of S:

When building a subset of S, there are two choices for each
element: either it’s in the subset or it’s not.

=⇒ There are 2 · 2 · 2 · · · · · 2 = 2n ways to build a subset.

=⇒ There are 2n subsets of S.



In Summary:

1st Way:

Total # of
subsets of S =

(n
0

)
+
(n

1

)
+
(n

2

)
+ · · ·+

( n
n−1

)
+
(n

n

)

2nd Way:

Total # of
subsets of S = 2n

∴
(n

0

)
+
(n

1

)
+
(n

2

)
+ · · ·+

( n
n−1

)
+
(n

n

)
= 2n



Block Walking

An interpretation of the binomial coefficients



Block walking: The grid of blocks



Block walking: Coordinates



Block walking: Coordinates



Block walking: Coordinates



Block walking: Coordinates



Block walking: The number of walks from 0,0 to 0,0



Block walking: The number of walks from 0,0 to 1,0



Block walking: The number of walks from 0,0 to 1,1



Block walking: The number of walks from 0,0 to 2,0



Block walking: The number of walks from 0,0 to 2,1



Block walking: The number of walks from 0,0 to 2,2



Block walking: The number of walks from 0,0 to 3,0



Block walking: The number of walks from 0,0 to 3,1



Block walking: The number of walks from 0,0 to 3,2



Block walking: The number of walks from 0,0 to 3,3



Block walking: The number of walks from 0,0 to n,k



Block walking: The number of walks from 0,0 to n,k

The # of block walks from 0,0 to n,k is
(

n
k

)



Combinatorial Proof:

To walk from 0,0 to n,k:

You need to travel n total blocks to get to the nth row.
k of these n blocks must be to the right to end up in the k th

position in the row.

# of block walks from 0,0 to n,k:
(

n
k

)



Our 3rd Identity
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Pascal’s Triangle: Sums of Diagonals
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Pascal’s Triangle: Sums of Diagonals

(n
0

)
(n+1

1

)
(n+2

2

)
(n+3

3

)
. . . (n+r

r

)
(n+r+1

r

)



Identity

(
n
0

)
+

(
n + 1

1

)
+

(
n + 2

2

)
+

(
n + 3

3

)
+ · · ·+

(
n + r

r

)
=

(
n + r + 1

r

)



Combinatorial Proof: Block Walks!



Find the last possible left turns:



Find the last possible left turns:



Find the last possible left turns:



Find the last possible left turns:



Find the last possible left turns:



Key Observation:

From each of the last left turns, there’s only one way to get to .



Counting the Block Walks

# of block
walks to = # of block walks whose last left turn is at the 1st circle

+ # of block walks whose last left turn is at the 2nd circle
...
+ # of block walks whose last left turn is at the last circle

# of block
walks to = # of block walks from 0,0 to the 1st circle

+ # of block walks from 0,0 to the 2nd circle
...
+ # of block walks from 0,0 to the last circle



Using the Interpretation of the Binomial Coefficients:

For some n:



Counting the Block Walks:

# of block
walks to = # of block walks from 0,0 to the 1st circle

+ # of block walks from 0,0 to the 2nd circle
...
+ # of block walks from 0,0 to the last circle

(
n + r + 1

r

)
=

(
n
0

)

+
(

n + 1
1

)
...

+
(

n + r
r

)



Other Diagonals



Pascal’s Triangle: The 3rd Diagonal
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Triangular Numbers!



Triangular Numbers

Idea: Form equilateral triangles using equally spaced dots
stacked on top of each other.

Tn = the number of dots in such a triangle with side length of n.

T1 = 1

T2 = 3

T3 = 6

T4 = 10

T5 = 15



Pascal’s Triangle: The 3rd Diagonal

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
...

...

Triangular Numbers!



Pascal’s Triangle: The 4th Diagonal
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Tetrahedral Numbers!



Tetrahedral Numbers

Idea: Form regular tetrahedrons using equally spaced balls
stacked on top of each other.

Hn = the number of balls in such a tetrahedron with side length of n.

1: 1 ball =⇒ H1 = 1

2: 3 balls in the base
1 ball on top =⇒ H2 = 4

3: 6 balls in the base
3 balls in the middle layer
1 ball on top =⇒ H3 = 10

4: 10 balls in the base
6 balls in the 2nd layer
3 in the 3rd layer
1 ball on top =⇒ T4 = 20



Pascal’s Triangle: The 4th Diagonal
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Tetrahedral Numbers!



Pascal’s Triangle: Shallow Diagonals

Source: http://en.wikipedia.org/wiki/File:PascalTriangleFibanacci.svg Author: RDBury

Fibonacci Numbers!



Counting Compositions



Counting Compositions

Let n be a positive integer.

A composition of n: An ordered sum of positive integers that
add up to n.

Example: There are eight compositions of 4:

1 + 1 + 1 + 1 = 4

1 + 1 + 2 = 4

1 + 2 + 1 = 4

2 + 1 + 1 = 4

2 + 2 = 4

1 + 3 = 4

3 + 1 = 4

4 = 4



The Eight Compositions of 4:

# of Compositions w/ Four Terms: 1
1+1+1+1=4

# of Compositions w/ Three Terms: 3
1+1+2=4
1+2+1=4
2+1+1=4

# of Compositions w/ Two Terms: 3
2+2=4
1+3=4
3+1=4

# of Compositions w/ One Term: 1
4=4



The Eight Compositions of 4:

# of Compositions w/ Four Terms: 1 =
(3

3

)
1+1+1+1=4

# of Compositions w/ Three Terms: 3 =
(3

2

)
1+1+2=4
1+2+1=4
2+1+1=4

# of Compositions w/ Two Terms: 3 =
(3

1

)
2+2=4
1+3=4
3+1=4

# of Compositions w/ One Term: 1 =
(3

0

)
4=4



Identity

# of compositions of n with k terms =
(

n − 1
k − 1

)



Combinatorial “Stars & Bars” Proof

Start with the stars:

Place n stars in a row: ? ? ? ? ? · · · ? ? ?

Then add the bars:

Place k − 1 bars in the n − 1 spaces between the n stars
(w/ at most 1 bar in each space):

? | ? ? ? | ? · · · | ? | ? ?



Key Observation

Counting the # of stars between the bars:

each placement of bars ←→ a composition of n

?| ? ? ? | ? · · · | ? | ? ? ←→ 1 + 3 + · · ·+ 1 + 2 = n



Key Observation

There’s a (bijective) correspondence between the sets:


Placements of k − 1 bars

in the n − 1 spaces
between the n stars

 ←→


Compositions

of n with
k terms



Example:

Placements
of 2

bars in the
3 spaces

between the
4 stars

? | ? | ? ? ←→ 1 + 1 + 2 = 4

? | ? ? | ? ←→ 1 + 2 + 1 = 4

? ? | ? |? ←→ 2 + 1 + 1 = 4

Compositions
of 4 w/
3 terms



A Consequence of the Correspondence

# of placements of k − 1 bars in the
n − 1 spaces between the n stars

(with at most 1 bar in each space)

=
# of compositions
of n with k terms



Counting the # of Placements

# of placements of k − 1 bars in the
n − 1 spaces between the n stars

(with at most 1 bar in each space)
=

# of ways to choose
k − 1 objects from a
set of n − 1 objects

=
(

n − 1
k − 1

)



In Summary:

# of compositions
of n with k terms

=
# of placements of k − 1 bars in the
n − 1 spaces between the n stars

(with at most 1 bar in each space)

# of placements of k − 1 bars in the
n − 1 spaces between the n stars

(with at most 1 bar in each space)
=
(

n − 1
k − 1

)

=⇒ # of compositions
of n with k terms

=
(

n − 1
k − 1

)


